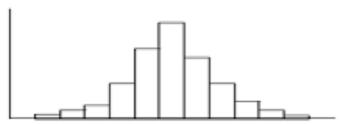
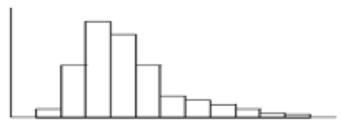
Center and Spread Cohen Chapter 3

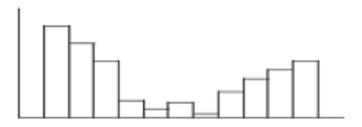

EDUC/PSY 6600

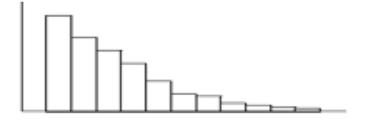
"You can, for example, never foretell what any one man will do, but you can say with precision what an average number will be up to. *Individuals vary*, but percentages remain constant. So says the statistician."

-- Sherlock Holmes, The Sign of Four

Distributions Examples


Bell-shaped


Bimodal


Right-skewed

U-shaped

Uniform

Three Measures of Center

Mean

"Arithmetic Average" = add them all up and divide by the count

```
Not resistant: easily influenced by extreme values or outliers
```

Can do a "trimmed" mean (leave off the most extreme values, like 1% or 5%)

In a **<u>POPULATION</u>**: "Mu" (μ)

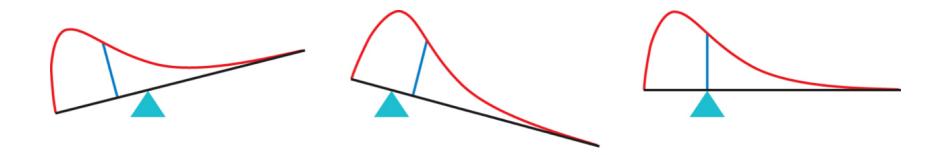
$$\mu = \frac{\sum X_i}{N}$$

N

In a **<u>SAMPLE</u>**: "X-bar" (\overline{X}) but APA uses "M" for abbreviation

 $\bar{X} = \frac{\sum X_i}{n}$

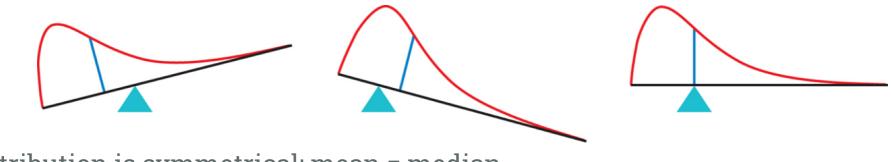
Median 50th percentile, APA: "Mdn" "Middle" value, when ordered/ranked in increasing order ODD #: middle value EVEN #: avg of 2 middle Half the values are above, and half below Easy for a computer to do RESISTANT: NOT influenced by a few extreme values or outliers


Mode

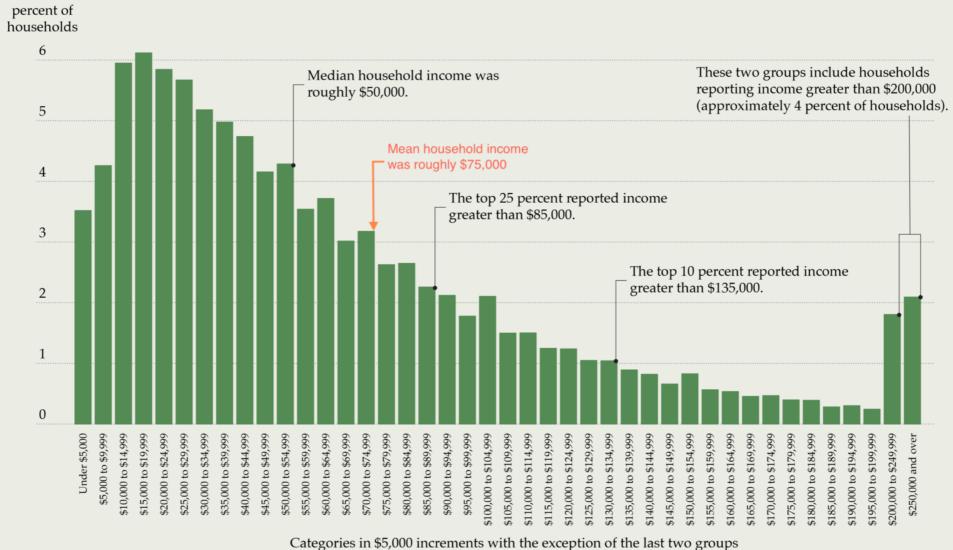
Most common value, largest frequency, highest peak Non-uniqueness - can have more than one mode Doesn't always represent the 'center' Do NOT usually use, other than descriptively

Mean vs. Median

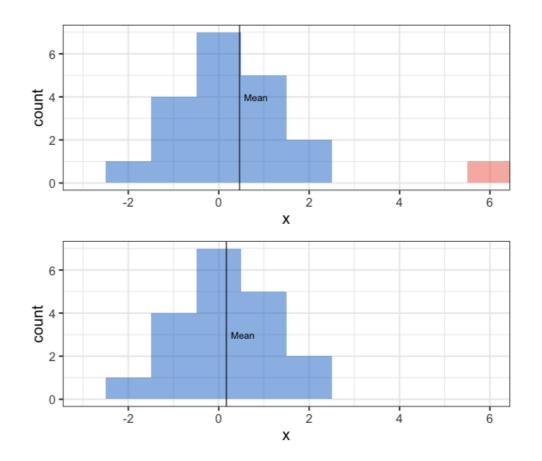
Median: the center point, half of values are on each side, not affected by the skew, the "typical value"


Mean: the "balance" point, pulled to the side of the skew, not typical

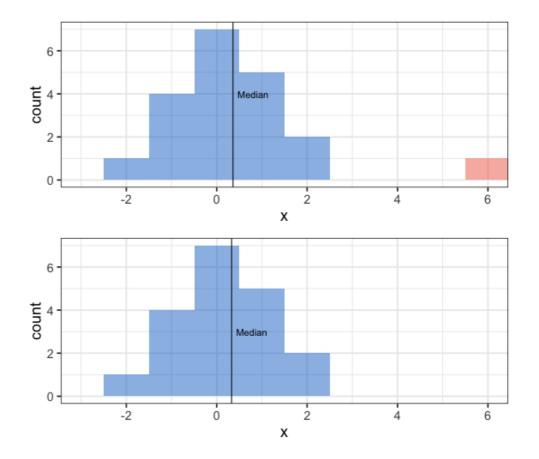
Mean vs. Median


Median: the center point, half of values are on each side, not affected by the skew, the "typical value"

Mean: the "balance" point, pulled to the side of the skew, not typical


If distribution is symmetrical: mean = median

Distribution of annual household income in the United States 2010 estimate


- The MEDIAN is **resistant** & doesn't change much
- The MEAN is **influenced** & changes more!
- Average does NOT mean typical
- Average moves when we remove the high point

- The MEDIAN is **resistant** & doesn't change much
- The MEAN is **influenced** & changes more!
- Average does NOT mean typical
- Average moves when we remove the high point

- The MEDIAN is **resistant** & doesn't change much
- The MEAN is **influenced** & changes more!
- Average does NOT mean typical
- Average moves when we remove the high point
- Median doesn't move when we remove the high point

- The MEDIAN is **resistant** & doesn't change much
- The MEAN is **influenced** & changes more!
- Average does NOT mean typical
- Average moves when we remove the high point
- Median doesn't move when we remove the high point

Three Measures of Spread

Range, IQR, & SIR	Variance	Standard Deviation
 Range = Max - Min Interquartile Range IQR = Q3 - Q1 	 DEVIANT: how far from the center (mean) SQUARE: so + & - don't cancel out to 0 (units are also squared) AVERAGE: summarize with a single value In a POPULATION: called "sigma-squared" 	 SQUARE-ROOT VARIANCE to get back to the original units In a POPULATION: called "sigma"
 Semi- Interquartile Range 	$SS = \sum (X_i - mean)^2$ $MS = \frac{SS}{df}$	$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum(X_i - \mu)}{N}} = \sqrt{\frac{SS}{N}}$ $= \sqrt{MS}$
SIR = (Q3 - Q1) / 2	$\sigma^2 = \frac{\sum(X_i - \mu)}{N} = \frac{SS}{N} = MS$	In a SAMPLE: called "s"
 Range is super dependent on extreme values or outliers IRG & SIR more resistant 	<pre>In a SAMPLE: called "s-squared" $s^{2} = \frac{\sum(X_{i} - \bar{X})}{n-1} = \frac{SS}{n-1} = \frac{SS}{df} = MS$ Degrees of Freedom: df = n - 1</pre>	$s = \sqrt{s^2} = \sqrt{\frac{\sum(X_i - \bar{X})}{n - 1}} = \sqrt{\frac{SS}{n - 1}}$ $= \sqrt{MS}$

/ 39

Best Summary of the Data?

"... the perfect estimator does not exist." -- Rand Wilcox, 2001

Best Summary of the Data?

"... the perfect estimator does not exist." -- Rand Wilcox, 2001

Median and SIR

Skewed data or outliers

Mean and SD

Symmetrical and no outliers

Best Summary of the Data?

"... the perfect estimator does not exist." -- Rand Wilcox, 2001

Median and SIR

Mean and SD

Skewed data or outliers

Symmetrical and no outliers

A graph gives the best overall picture of a distribution

Properties of the Mean and SD

If you the same CONSTANT number onto every score	MEAN	STANDARD DEVIATION
ADD (or subtract)	ADD (or subtract) SAME amount	unchanged
MULTIPLY (or divide)	MULTIPLY (or divide) by the SAME amount	MULTIPLY (or divide) by the SAME amount

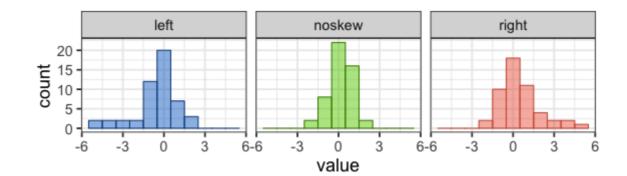
Skewness

- Degree of **symmetry** in distribution
- Can detect **visually** (histogram, boxplot)
- Skewness statistic
 - Based on cubed deviations from the mean
 - Divided by SE of skewness
 - $^\circ~>\pm 2$ is a sign of skewed data

Skewness

- Degree of **symmetry** in distribution
- Can detect **visually** (histogram, boxplot)
- Skewness statistic
 - Based on cubed deviations from the mean
 - Divided by SE of skewness
 - $\circ \ > \pm 2$ is a sign of skewed data

$$Skewness = rac{N}{N-2}rac{\sum_{i=1}^n (X_i-ar{X})^3}{(N-1)s^3}$$


- Interpreting skewness statistic
 - positive value = positive (right) skew
 - negative value = negative (left)
 skew
 - o zero value = no skew

Skewness

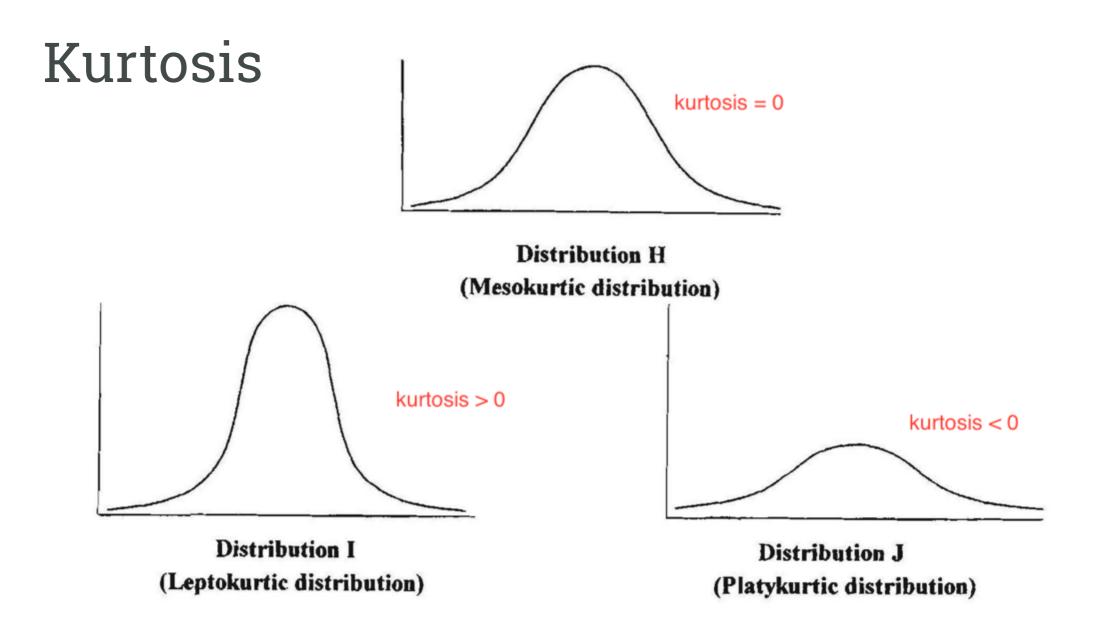
- Degree of **symmetry** in distribution
- Can detect **visually** (histogram, boxplot)
- Skewness statistic
 - Based on cubed deviations from the mean
 - Divided by SE of skewness
 - $\circ \ > \pm 2$ is a sign of skewed data

$$Skewness = rac{N}{N-2}rac{\sum_{i=1}^n (X_i-ar{X})^3}{(N-1)s^3}$$

- Interpreting skewness statistic
 - positive value = positive (right) skew
 - negative value = negative (left)
 skew
 - o zero value = no skew

Kurtosis

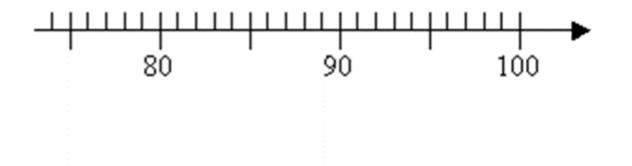
$$Kurtosis = \frac{N(N+1)}{(N-2)(N-3)} \frac{\sum_{i=1}^{n} (X_i - \bar{X})^4}{(N-1)s^4} - 3\frac{(N-1)(N-1)}{(N-2)(N-3)}$$

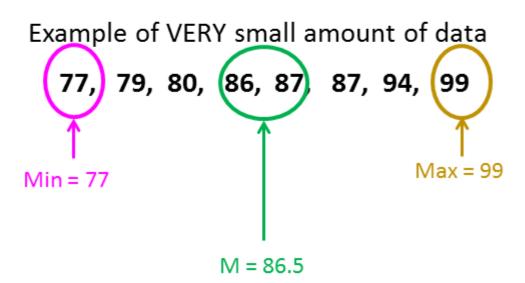

- Degree of flatness in distribution
- Harder to detect visually
- Kurtosis statistic
 - Based on deviations from the mean (raised to 4th power)
 - $\circ~$ Divided by SE of kurtosis
 - $^\circ~>\pm 2$ is a sign of problems with kurtosis

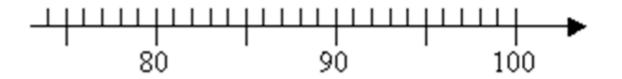
Kurtosis

$$Kurtosis = \frac{N(N+1)}{(N-2)(N-3)} \frac{\sum_{i=1}^{n} (X_i - \bar{X})^4}{(N-1)s^4} - 3\frac{(N-1)(N-1)}{(N-2)(N-3)}$$

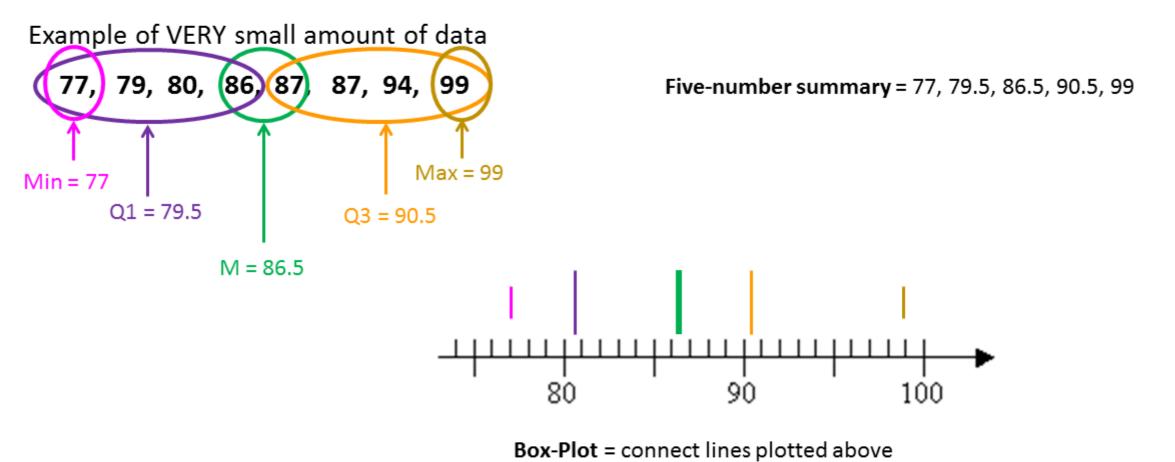
- Degree of **flatness** in distribution
- Harder to detect visually
- Kurtosis statistic
 - Based on deviations from the mean (raised to 4th power)
 - $\circ~$ Divided by SE of kurtosis
 - > ±2 is a sign of problems with kurtosis


- Interpreting kurtosis statistic
 - positive value = leptokurtic (peaked)
 - o negative value = platykurtic (flat)
 - zero value = mesokurtic (normal)

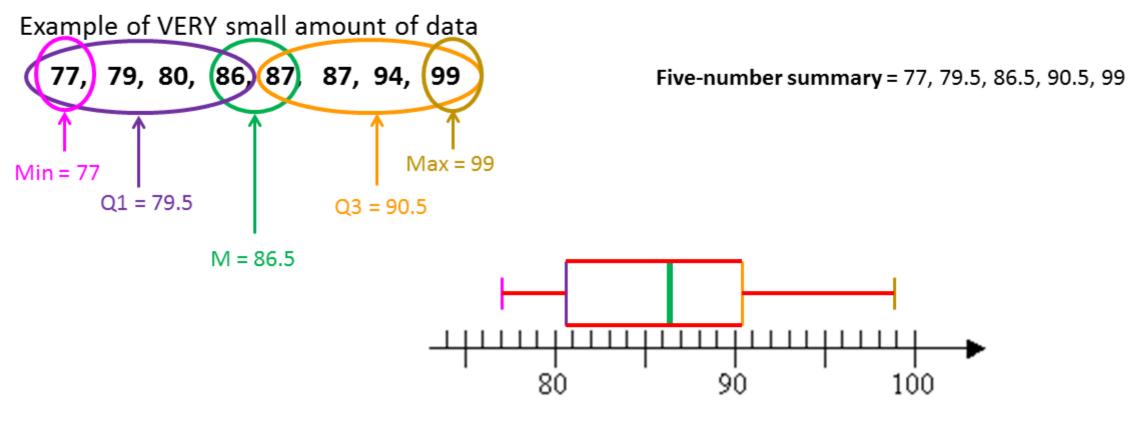

Five-Number Summary


Example of VERY small amount of data

77, 79, 80, 86, 87, 87, 94, 99

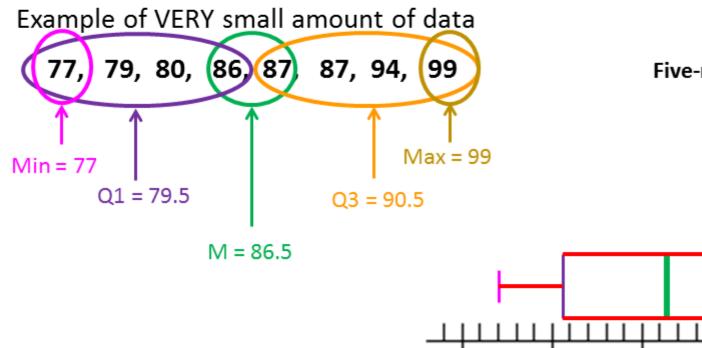


Five-Number Summary - Median



Five-Number Summary - Quartiles

17 / 39


Boxplots (Modified) - Lines

Box-Plot = connect lines plotted above

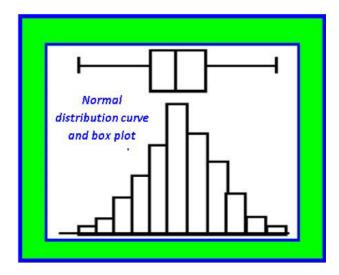
Boxplots (Modified) - IQR and SIQR

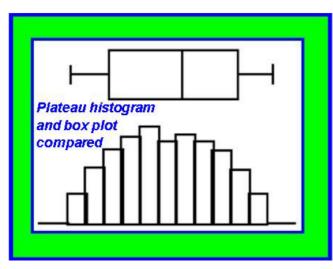
80

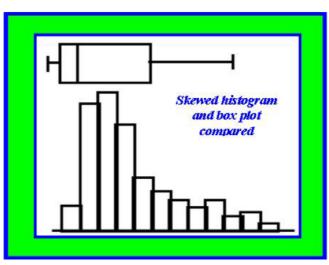
Five-number summary = 77, 79.5, 86.5, 90.5, 99

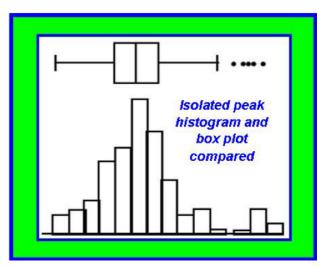
IQR = 90.5 - 79.5 = 11

SIQR = 11 / 2 = 5.5

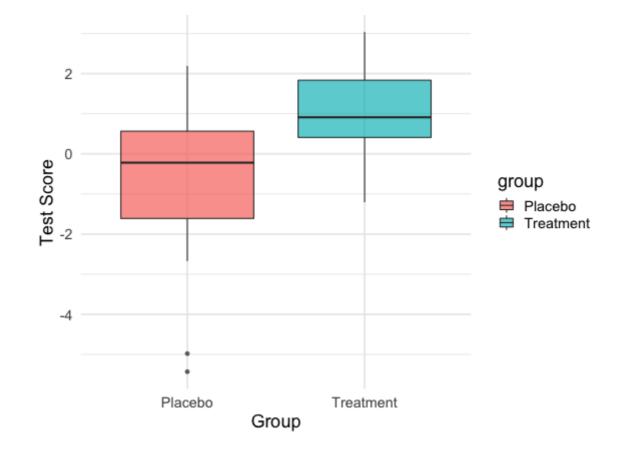

100

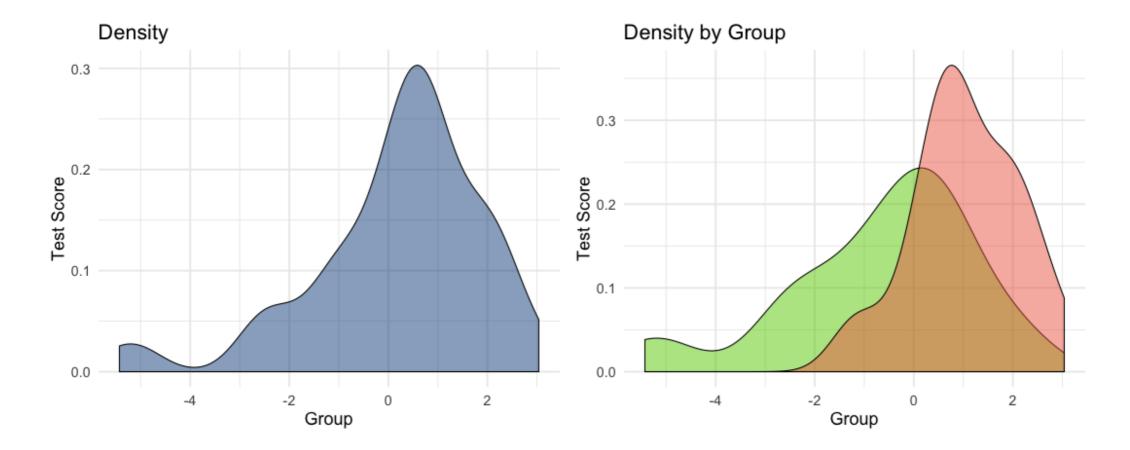


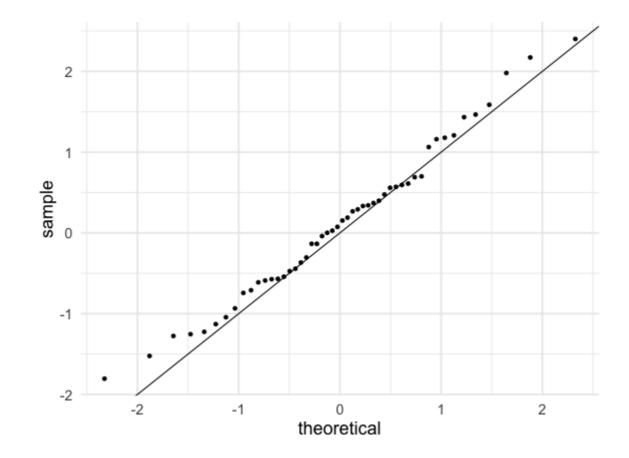

Box-Plot = connect lines plotted above


90

Boxplot vs. Histogram






Boxplots by Group

Density Plots

Quantile-Quantile (Q-Q) Plot

Let's Apply This To the Cancer Dataset (on Canvas)

Read in the Data

library (tidyverse)	<pre># Loads several very helpful 'tidy' packages</pre>	
library (rio)	# Read in SPSS datasets	
library (furniture)	# Nice tables (by our own Tyson Barrett)	
library (psych)	# Lots of nice tid-bits	

cancer_raw <- rio::import("cancer.sav")</pre>

Read in the Data

library (tidyverse)	<i># Loads several very helpful 'tidy' packages</i>	
library (rio)	# Read in SPSS datasets	
library (furniture)	# Nice tables (by our own Tyson Barrett)	
library (psych)	# Lots of nice tid-bits	

cancer_raw <- rio::import("cancer.sav")</pre>

And Clean It

Frequency Tables with furniture::tableF()

cancer_clean %>%
furniture::tableF(age, n = 8)

cancer_clean %>%
furniture::tableF(trt)

age 27 42 44	Freq 1 1 1	1 2 3	Percent 4.00% 4.00% 4.00%	4.00% 8.00% 12.00%
46 •••	2	5	8.00%	20.00%
68	1	20	4.00%	80.00%
69	1	21	4.00%	84.00%
73	1	22	4.00%	88.00%
77	2	24	8.00%	96.00%
86	1	25	4.00%	100.00%

trt	Freq	CumFreq	Percent	CumPerc
Placebo	14	14	56.00%	56.00%
Aloe Juice	11	25	44.00%	100.00%

Extensive Descriptive Stats psych:describe()

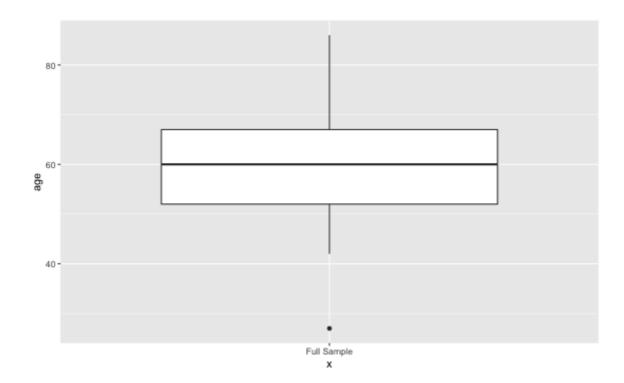
cancer_clean %>%
 dplyr::select(age, weighin, totalcin, totalcw2, totalcw4, totalcw6) %>%
 psych::describe()

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew
age	1	25	59.64	12.93	60.0	59.95	11.86	27	86.0	59.0	-0.31
weighin	2	25	178.28	31.98	172.8	176.57	21.05	124	261.4	137.4	0.73
totalcin	3	25	6.52	1.53	6.0	6.33	0.00	4	12.0	8.0	1.80
totalcw2	4	25	8.28	2.54	8.0	8.10	2.97	4	16.0	12.0	1.01
totalcw4	5	25	10.36	3.47	10.0	10.19	2.97	6	17.0	11.0	0.49
totalcw6	6	23	9.48	3.49	9.0	9.21	2.97	3	19.0	16.0	0.77
	kurto	osis	s se								
age	- (9.01	L 2.59								
weighin	(9.07	7 6.40								
totalcin	4	4.30	0.31								
totalcw2	-	1.14	4 0.51								
totalcw4	- 2	1.00	0.69								
totalcw6	(9.53	3 0.73								

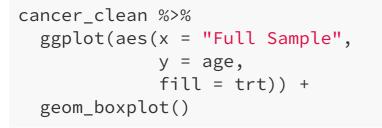
Smaller Set with furniture::table1()

For the Entire Sample

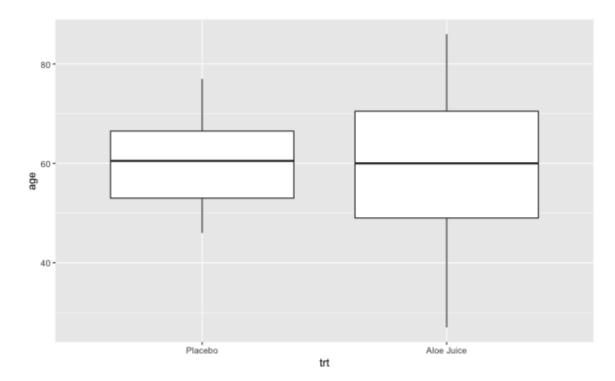
cancer_clean %>%
furniture::table1(trt, age, weighin)


Mean/Count (SD/%) n = 25 trt Placebo 14 (56%) Aloe Juice 11 (44%) age 59.6 (12.9) weighin 178.3 (32.0) Breaking the Sample by a Factor

cancer_clean %>%
 dplyr::group_by(trt) %>%
 furniture::table1(age, weighin)

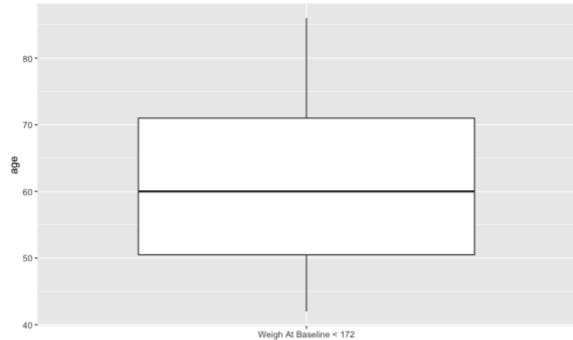

	trt	
	Placebo	Aloe Juice
	n = 14	n = 11
age	59.8 (9.0)	59.5 (17.2)
weighin		
	167.5 (23.0)	192.0 (37.4)

Boxplot, one one geom_boxplot()

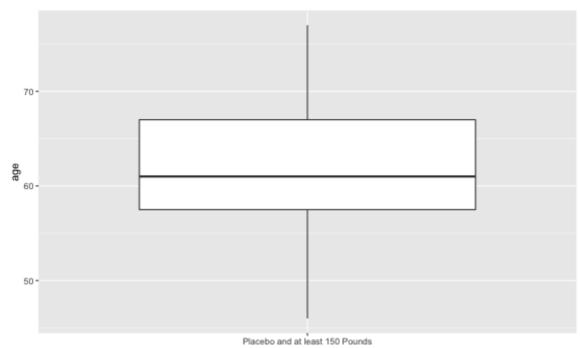

Boxplots, by groups - (1) fill color

(x = "Full Sample", # x = "quoted text" y = age, # y = contin_var (no quotes) fill = trt)) + # fill = group_var (no quotes)

Boxplots, by groups - (2) x-axis breaks

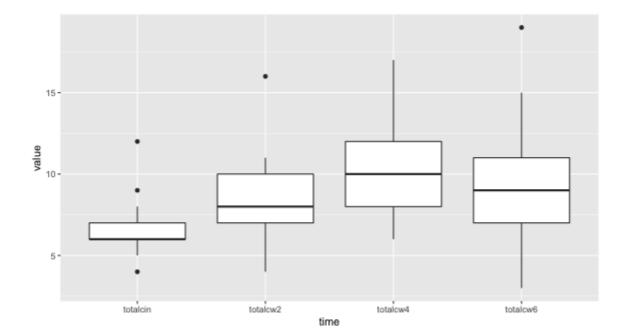

Boxplots, by groups - (3) seperate panels

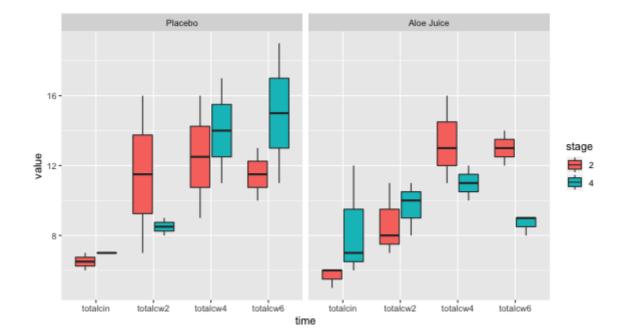
```
cancer_clean %>%
 ggplot(aes(x = "Full Sample", # x = "quoted text"
 geom_boxplot() +
 facet_grid(. ~ trt)
```


```
y = age)) + # y = contin_var (no quotes)
          # . ~ group_var (no quotes)
```

Aloe Juice Placebo 80 -60 age 40-Full Sample Full Sample

Boxplot for a Subset - 1 requirement


Boxplot for a Subset - 2 requirements


Boxplot for a Subset - 2 requirements (%in%)

Boxplot for Repeated Measures

Boxplot: COMPLICATED!

Questions?

Next Topic

Standard and Normal