Standard and Normal

Cohen Chapter 4

EDUC/PSY 6600




How do all these unusuals strike you, Watson?
Their cumulative effect 1s certainly considerable,
and yet each of them 1s quite possible in i1tself.

-- Sherlock Holmes and Dr. Watson,

The Adventure of Abbey Grange



Exploring Quantitative Data

Building on what we've already discussed:

1. Always plot your data: make a graph.

2. Look for the overall pattern (shape, center, and spread) and for
striking departures such as outliers.

3. Calculate a numerical summary to briefly describe center and
spread.

4. Sometimes the overall pattern of a large number of
observations is so reqular that we can describe it by a smooth
curve.



Let's Start with Density Curves

A density curve 1s a curve that:

e 1s always on or above the horizontal axis
e has an area of exactly 1 underneath it

It describes the overall pattern of a distribution and highlights
proportions of observations as the area.



Density Curves and Normal

Distributions

Heights (inches)
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MLB Heights Since 1980
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Normal Distribution

Many dependent variables are o
assumed to be normally
distributed

e Many statistical procedures assume
this 0.1
o Correlation, regression, t-tests,
and ANOVA 0.0
e Also called the Gaussian R o
distribution
o for Karl Gauss




The 68-95-99.7 Rule
In the Normal distribution with mean u and standard deviation o:

= Approximately 68% of the observations fall within o of u.
= Approximately 95% of the observations fall within 20 of u.
= Approximately 99.7% of the observations fall within 30 of u.
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Each u
differently shaped

and o combination produces

e Family of distributions

* Probability generating function for

normal distribution:

1

T s

If we know u and o for given variable in a
given population we can, for given value
of X, compute the density (frequency) of

(e)—(X—,u)2 /207

that value and thus determine its

probability

* No matter the exact shape, the properties in
terms of area under the curve per SD unit are

the same!
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Do We Have a Normal Distribution?
Check Plot!

Bell shaped curve?

Points on the line?

theoretical



Z-Scores, Computation

Original Units

Standardizing
Convert a value to a standard 5
score ("z-score”
e First subtract the mean e o e om
e Then divide by the standard Standardized Units
deviation
Z:X_M:X_X En.z
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Z-Scores, Units

e 7-scores are 1n SD units

e Represent SD distances away from the mean (M = 0)
o 1f z-score = -0.50 then 1t 1s : of SD below mean

e Can compare z-scores from 2 or more variables
originally measured in differing units

Note: Standardizing does NOT "normalize” the data
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Let's Apply This to an Exmple Situation




Example: Draw a Picture

95% of students at a school are between 1.1 and 1.7
meters tall

Assuming this data is normally distributed, can you calculate the MEAN and STANDARD DEVIATION?
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Example: Calculate a z-Score

You have a friend who 1s 1.85 meters tall.

Class: M = 1.4 meters, SD = 0.15 meters

How far is 1.85 from the mean? How many standard deviations is that?




Example: Calculate a z-Score

You have a friend who 1s 1.85 meters tall.

Class: M = 1.4 meters, SD = 0.15 meters

How far is 1.85 from the mean? How many standard deviations is that?
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Using the z-Table

Meanto:z

Beyond z

Mean :
Mean to Beyond Mean to Beyond

z z z z z z

.00 0000 5000 41 1591 .3409
K1} .0040 4960 42 1628 3372
02 .0080 4520 43 1664 3336
.03 .0120 4880 44 1700 .3300
04 0160 4840 45 1738 .3264
.05 0199 4801 46 ATT2 3228
.06 0239 4761 AT .1808 3192
07 0279 4721 48 1844 .3156
.08 0318 4681 49 1878 3121
09 .0359 4641 50 1915 .3085
A0 0398 AB02 51 1850 .3050
11 0438 4562 52 1985 A015
A2 0478 A522 53 2018 2981
A3 0517 4483 54 .2054 29486
14 0557 4443 55 .2088 232
15 .0596 4404 56 2123 2877
16 0B3A 43R4 &7 2187 R4

Mean to Beyond Mean to Beyond
z I z z z z
2.18 4854 0146 272 4967 0033
2.19 A857 0143 2.73 4968 0032
220 4861 0139 2.74 4969 0031
221 4864 .0136 275 4970 0030
222 .4868 .03z 2.76 497 0029
223 A48T 0129 2.77 4872 0028
224 4875 0125 2.78 4973 0027
225 4878 0122 2.79 4974 0026
226 4881 0119 2.80 4974 0026
227 4884 0116 2.81 4975 0025
228 4887 .0113 2.82 4978 0024
229 4890 .0110 2.83 A977 0023
2.30 4893 0107 284 4977 0023
2.3 4896 .0104 285 4878 0022
232 4898 0102 2.86 4879 0021
233 4801 .0089 287 4879 0021
2.34 4804 .0096 2.8 4980 0020
235 4906 .0054 2.89 4981 0019
2.36 4808 .0081 280 4981 0019
237 4811 0089 29 4982 0018
2.38 4813 0087 282 4982 0018
2.38 4816 0084 2583 4983 0017
240 4818 .oogz 2.94 4984 0016
241 A520 .0080 2585 4984 0016
242 Ag22 0078 2586 4585 0015
243 4525 .0075 297 4585 0015
244 A827 0073 2.98 4986 0014
245 48929 007 299 4986 0014
248 491 0089 3.00 A987 0013
247 4832 .00B8 320 4993 0007
2.48 4934 .0066
249 4936 .0064 340 4997 0003
2.50 4938 .0os2
2.51 4940 .0060 3.60 4998 0002
252 45941 .0059
253 4943 0057 3.80 4999 0001
2.54 4945 .0055
255 4946 .0054 4.00 49997
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Examples: Standardizing Scores

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)
1. The z-score for a student 1.63 m tall = __
2. The height of a student with a z-socre of -2.65 = __
3. The Pecentile Rank of a student thatis 1.51 m tall = __

4. The 90th percentile for students heights = __



Examples: Standardizing Scores

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)
1. The z-score for a student 1.63 m tall = __
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3. The Pecentile Rank of a student that is 1.51 m tall =
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Examples: Find the Probability That...

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)
(1) More than 1.63 m tall

(2) Less than 1.2 m tall

(3) between 1.2 and 1.63 tall




Examples: Find the Probability That...

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)
(1) More than 1.63 m tall
(2) Less than 1.2 m tall

(3) between 1.2 and 1.63 tall




Examples: Percentiles

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)
(1) The perentile rank of a 1.7 m tall Student = __

(2) The height of a studnet in the 15th percentile = __




Examples: Percentiles

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)
(1) The perentile rank of a 1.7 m tall Student = __

(2) The height of a studnet in the 15th percentile = __
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Into Theory Mode Again




Parameters vs. Statistics

Sample
Population “statistics”

“parameters”

n = size
X = mean
s? = variance
s = standard deviation

N = size

o2 = variance
o = standard deviation
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Statistical Estimation

e The process of statistical inference involves using information from a sample to
draw conclusions about a wider population.

e Different random samples yield different statistics. We need to be able to describe
the sampling distribution of possible statistic values in order to perform
statistical inference.

e We can think of a statistic as a random variable because it takes numerical values
that describe the outcomes of the random sampling process.
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Sampling Distribution
The LAW of LARGE NUMBERS assures us that if we measure enough subjects, the

statistic x-bar will eventually get very close to the unknown parameter mu.

If we took every one of the possible samples of a certain size, calculated the sample
mean for each, and graphed all of those values, we'd have a sampling distribution.

/ (raw data) \

“Sampling Distribution”

Shows all valuestaken by
the statistic,
in all possible samples of the
same size




http://shiny.stat.calpoly.edu/Sampling_Distribution/
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Sampling Distribution for the MEAN

The MEAN of a sampling distribution for a sample mean is just as likely to be above
or below the population mean, even if the distribution of the raw data is skewed.

The STANDARD DEVIATION of a sampling distribution for a sample mean is is
SMALLER than the standard deviation for the population by a factor of the square-
root of n.

IF | THEN
individual observations sample mean
Mean p, & Mean py ., = Hy &
Standard Deviation o, | Standard Deviationo,_,,, = 0, /Vn

Note : These facts about the mean and standard deviation of X are true
no matter what shape the population distribution has.



Normally Distributed Population

If the population is NORMALLY distributed:

/_ .ﬂ"SE}T \
Standard
error

SE for mean

= SD divided

by square

IF SRsizen_ | THEN root of the
individual SRS size n 'f the sample mean sample size

observations SRSsizcn B of an SRS of size n
have the has the N(u, o/vn) \_ V.
N(u,o) distribution distribution
Population +—— Values of ¥ ——

Mean o



Skewed Population

The distribution of lengths of all customer service
calls received by a bank in a month.

45 4

X = Raw data for ALL calls
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I 3
L J

Percent of all means

Right-skewed
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Call lengths (seconds)
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The distribution of the sample means (x-bar) for
500 random samples of size 80 from this
population. The scales and histogram classes are
exactly the same in both panels

X-bar = AVERAGE for 80

More normal

200 400 600 800 1000 1200

Mean length of 80 calls (seconds)



The Central Limit Theorem

Population Distribution
(sample size 1) Sampling Distribution
for MEAN of a sample size 2

Sampling Distribution

for MEAN of a sample size 10 Sampling Distribution
for MEAN of a samplesize 10




The Central Limit Theorem

When a sample size (n) is large, the sampling
distribution of the sample MEAN i1s approximately
normally distributed about the mean of the population
with the stadard deviation less than than of the
population by a factor of the square root of n.
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Back to the Example Situation




Examples: Probabilities

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)

(1) The probability a randomly selected student is more than 1.63 m tall = __

(2) The probability a randomly selected sample of 16 students average more than 1.63 m tall = __




Examples: Probabilities

Assume: School's population of students heights are normal (M = 1.4m, SD = 0.15m)
(1) The probability a randomly selected student is more than 1.63 m tall = __
(2) The probability a randomly selected sample of 16 students average more than 1.63 m tall = __

e Image needed here



Let's Apply This to the Cancer Dataset




Read 1n the Data

library(tidyverse) # Loads several very helpful 'tidy' packages
library(rio) # Read in SPSS datasets

library(furniture) # Nice tables (by our own Tyson Barrett)
library(psych) # Lots of nice tid-bits

cancer_raw <- rio::import("cancer.sav")



Read 1n the Data

library(tidyverse) # Loads several very helpful 'tidy' packages
library(rio) # Read in SPSS datasets

library(furniture) # Nice tables (by our own Tyson Barrett)
library(psych) # Lots of nice tid-bits

cancer_raw <- rio::import("cancer.sav")

And Clean It

cancer_clean <- cancer_raw %>%
dplyr::rename_all(tolower) %>%
dplyr::mutate(id = factor(id)) %>%
dplyr::mutate(trt = factor(trt,
labels = c("Placebo",
"Aloe Juice"))) %>%
dplyr::mutate(stage = factor(stage))



Standardize a variable with scale()

cancer_clean %>% cancer_clean %>%
furniture::tablel(age) dplyr::mutate(agez = (age - 59.6) / 12.9) %

dplyr::mutate(agez scale(age))%>%
dplyr::select(id, trt, age, agez, ageZ) %>%

head ()
Mean/Count (SD/%
n = 25 # A tibble: 6 x 5
age id trt age agez ageZl[,1]

59.6 (12.9) <fct> <fct> <dbl> <dbl> <dbl>
11 Placebo 52 -0.589 -0.591
25 Placebo 77 1.35 1.34
36 Placebo 60 0.0310 0.0278
4 9 Placebo 61 0.109 0.105
5 11 Placebo 59 -0.0465 -0.0495
6 15 Placebo 69 0.729 0.724



Standardize a variable - not normal

cancer_clean %>%
dplyr::mutate(ageZ = scale(age)) %>%
furniture::tablel(age, ageZ)

Mean/Count (SD/%)

n = 25
age

59.6 (12.9)
age’Z

-0.0 (1.0)

cancer_clean %>%
dplyr::mutate(agez
ggplot(aes(agezZ)) +
geom_histogram(bins

= scale(age)) %>%

= 14)

ages



Questions?




Next Topic

Intro to Hypothesis Testing: 1 Sample z-test




