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Introduction

User-defined functions — functions you create yourself — are an
important tool.

We will show how you can make your own functions.
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What is a Function Anyway?

It is a special R object that performs something on another object or
the environment.

For example,

• ggplot() takes a data.frame object and variable names and
produces a plot.

• lm() takes a formula, a data.frame and performs a statistical
model.

• gather() takes a data.frame and produces another
data.frame in another form
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Creating a Function

It all starts with the function function().

myfunction <- function(arguments){
stuff = that(you)
want = it + to + do + 4
you

}

After function() we use { and }. Everything in between is what
you want the function to do.

All you need to do is run the function and you can use it in the R
session.
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Named Functions

These are functions that you assign a name to.

mean2 <- function(x){
n <- length(x)
m <- (1/n) * sum(x)
return(m)

}

Now, mean2() is a function you can use.

What does this function do?
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Named Functions

v1 <- c(1,3,2,4,2,1,2,1,1,1) ## vector to try

Let’s give it a try using the vector v1

mean2(v1) ## our function

## [1] 1.8

mean(v1) ## the base R function

## [1] 1.8
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Named Functions

For practice, we will write one more function. Let’s make a function
that takes a vector and gives us the N, the mean, and the standard
deviation.

important_statistics <- function(x, na.rm=FALSE){
N <- length(x)
M <- mean(x, na.rm=na.rm)
SD <- sd(x, na.rm=na.rm)

final <- c(N, M, SD)
return(final)

}
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Named functions

One of the first things you should note is that we included a second
argument in the function seen as na.rm=FALSE (you can have as
many arguments as you want within reason).

• This argument has a default that we provide as FALSE
• We take what is provided in the na.rm and give that to both

the mean() and sd() functions.
• Finally, you should notice that we took several pieces of

information and combined them into the final object and
returned that.
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Named Functions

Let’s try it out with the vector we created earlier.

important_statistics(v1)

## [1] 10.000000 1.800000 1.032796
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Named Functions

Looks good but we may want to change a few aesthetics. In the
following code, we adjust it so we have each one labeled.

important_statistics2 <- function(x, na.rm=FALSE){
N <- length(x)
M <- mean(x, na.rm=na.rm)
SD <- sd(x, na.rm=na.rm)

final <- data.frame(N, "Mean"=M, "SD"=SD)
return(final)

}
important_statistics2(v1)

## N Mean SD
## 1 10 1.8 1.032796

We will come back to this function and use it in some loops and see
what else we can do with it.
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Anonymous Functions

Sometimes it is not worth saving a function but want to use it,
generally within loops.

function(x) thing(that, you, want, it, to, do, with, x)

We will show a few of these in the looping section (although they
are identical in nature to named functions, they just aren’t named)
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Why Write Your Own?

Several reasons exist.

• Looping
• Adjusting output
• Performing a special function
• Other customization

We are going to talk about looping in depth.
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Looping

Writing your own functions for looping is very common and
practical.

Loops are things that are repeated.

For example:

• We may want a certain statistic (like a mean) for every
continuous variable in the data set.

• We may want to remove 999 from every variable in a data set.
• We may want to change variable types of certain variables

across the whole data set.
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Looping

Examples in R include:

• for loops
• the apply family of functions
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For Loops

for (i in 1:10){
mean(data[, i])

}
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For Loops

Another example:

library(tidyverse)
data = read.csv("~/Dropbox/Teaching/R for Social Sciences/Data/WideFormat_TheOffice.csv") %>%

select(Prod1, MentalApt, PhysApt, Income, Children, SubsUse, Ment1, Ment2)
thing = list()
for (i in 1:8){

thing[[i]] = cbind(mean(data[, i]), sd(data[, i]))
}
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For Loops

thing

## [[1]]
## [,1] [,2]
## [1,] 3.2 1.146423
##
## [[2]]
## [,1] [,2]
## [1,] 5.2 2.305273
##
## [[3]]
## [,1] [,2]
## [1,] 5.733333 1.869556
##
## [[4]]
## [,1] [,2]
## [1,] 53.33333 12.63027
##
## [[5]]
## [,1] [,2]
## [1,] 0.4 0.7367884
##
## [[6]]
## [,1] [,2]
## [1,] 0.2666667 0.4577377
##
## [[7]]
## [,1] [,2]
## [1,] 13.86667 3.602909
##
## [[8]]
## [,1] [,2]
## [1,] 6.066667 2.65832
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For loops

I like for loops. They are easy to understand and fiddle with, after
some practice.

However, they used to be slow in R and so they have a bad
reputation.
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The apply family

There are several apply functions in R that do loops for you.

• apply()
• sapply()
• lapply()
• tapply()
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sapply

Produces a vector based on the function that it is repeating.

Both do the same thing here.

for (i in 1:10){
mean(data[, i])

}
sapply(1:10, function(i) mean(data[, i]))
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sapply

Can also just provide the data.frame and it assumes you want the
function (in this case mean()) applied to each variable.

sapply(data, mean)

## Prod1 MentalApt PhysApt Income Children SubsUse
## 3.2000000 5.2000000 5.7333333 53.3333333 0.4000000 0.2666667
## Ment1 Ment2
## 13.8666667 6.0666667
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lapply

Produces a list. Just like sapply() it takes a data.frame and a
function and applies it across the variables.

lapply(data, mean)

## $Prod1
## [1] 3.2
##
## $MentalApt
## [1] 5.2
##
## $PhysApt
## [1] 5.733333
##
## $Income
## [1] 53.33333
##
## $Children
## [1] 0.4
##
## $SubsUse
## [1] 0.2666667
##
## $Ment1
## [1] 13.86667
##
## $Ment2
## [1] 6.066667
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tapply

Is a bit different than the rest. It doesn’t do much in terms of
looping necessarily (although you can have it do that). Instead, it
applies a function based on a grouping variable. With the
tidyverse, however, this is not often used any more.

tapply(data$Income, data$Children, mean)

## 0 1 2
## 53.18182 55.00000 52.50000

How could you do this in the tidyverse framework?
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Loops with User-Defined Functions
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Loops with User-Defined Functions

Going back to our important_statistics2() function:

important_statistics2 <- function(x, na.rm=FALSE){
N <- length(x)
M <- mean(x, na.rm=na.rm)
SD <- sd(x, na.rm=na.rm)

final <- data.frame(N, "Mean"=M, "SD"=SD)
return(final)

}

Let’s put it in a loop.
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Loops with User-Defined Functions

lapply(data, important_statistics2)

## $Prod1
## N Mean SD
## 1 15 3.2 1.146423
##
## $MentalApt
## N Mean SD
## 1 15 5.2 2.305273
##
## $PhysApt
## N Mean SD
## 1 15 5.733333 1.869556
##
## $Income
## N Mean SD
## 1 15 53.33333 12.63027
##
## $Children
## N Mean SD
## 1 15 0.4 0.7367884
##
## $SubsUse
## N Mean SD
## 1 15 0.2666667 0.4577377
##
## $Ment1
## N Mean SD
## 1 15 13.86667 3.602909
##
## $Ment2
## N Mean SD
## 1 15 6.066667 2.65832
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Loops with User-Defined Functions

sapply(data, important_statistics2)

## Prod1 MentalApt PhysApt Income Children SubsUse Ment1
## N 15 15 15 15 15 15 15
## Mean 3.2 5.2 5.733333 53.33333 0.4 0.2666667 13.86667
## SD 1.146423 2.305273 1.869556 12.63027 0.7367884 0.4577377 3.602909
## Ment2
## N 15
## Mean 6.066667
## SD 2.65832
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Loops with User-Defined Functions

It applied our function across the variables in the data.frame. So
we can easily get information we want.

This was a very simplified version of how I created the table1()
function in furniture.
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Conclusions

Writing your own functions takes time and practice but it can be a
worthwhile tool in using R.

I recommend you start simple and start soon.

Ultimately, you can make your own group of functions you use often
and create a package for it so others can use them too :)
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