frames.Rd
Provides the average marginal effects of a GLM model with
bootstrapped confidence intervals. Similar results would be obtained from using
margins::margins()
.
frames(model, ci_type = "perc", boot = 100, ci = 0.95)
the model object
the type of boostrapped confidence interval; options are "perc", "basic", "bca"
the number of bootstrapped samples; default is 100
the confidence interval; the default is .975 which is the 95% confidence interval.
Using the average marginal effects as discussed by Tamas Bartus (2005), the coefficients are transformed into probabilities (for binary outcomes) or remain in their original units (continuous outcomes).
Bartus, T. (2005). Estimation of marginal effects using margeff. The Stata Journal, 5(3), 309–329. <https://EconPapers.repec.org/RePEc:tsj:stataj:v:5:y:2005:i:3:p:309-329>
library(furniture)
data(nhanes_2010)
fit = glm(marijuana ~ home_meals + gender + age + asthma,
data = nhanes_2010,
family = "binomial")
frames(fit)
#>
#> Bootstrapping...Done.
#> ┌────────────────────────────┐
#> │ Average Marginal Effects │
#> └────────────────────────────┘
#>
#> Estimate Lower Upper
#> home_meals -0.0097 -0.0169 -0.0031
#> genderFemale 0.1043 0.0379 0.1646
#> age 0.0007 -0.0075 0.0079
#> asthmaNo -0.0017 -0.0893 0.0893
#> ────