Applied Statistical Analysis EDUC 6050 Week 3

Finding clarity using data

- 1. Review Statistical Terminology
- 2. Central Tendency
- 3. Variability
- 4. Confidence Interval

Reliability and Validity

Reliability: the consistency of the
measure
Validity: does it measure what we think it
measures?

Reliability and Validity

Reliability: the consistency of the
measure
Validity: does it measure what we think it
measures?

Reliable Valid

Reliable Not Valid

Not Reliable Valid

Not Reliable Not Valid

Reliability and Validity

Reliability

Compare with factor analyses (not covered in the class)

Validity

Compare with correlations with things that should correlate or shouldn't

Often based on theory

Correlation and Experimentation

Correlation

Experimentation

observational, no treatment/intervention treatment/intervention (best
 if groups are randomized)

What are the pro's and con's of each?

Correlation and Experimentation

Depends on the field how often each are used

Possible, but difficult, to convince of causation with correlational (observational) data

Correlation does not imply causation AND Correlation does not imply it isn't causal

Central Tendency

What does this mean?

"arithmetic average" "the middle score" "most common score" divided by number of half of the scores scores

Sum of scores The number where

are above and half are below

The most common score

Central Tendency

Measure	When to use it
Mean	With interval/ratio data that are ~normally distributed
Median	With ordinal data With interval/ratio data that are skewed or have outliers
Mode	With nominal data

Outliers = points far from the other points

Computing the Mean

Sum of scores Number of scores

$$M = \frac{\sum X}{N}$$

Computing the Median

- 1. Order the values from lowest to highest
- 2. Find the middle value
- 3. If two are in the middle, take the average of those two

Computing the Mode

Find the value that is the most common

Mean,	Median,	and	Mode	for	Age	Degree
Age?					21	MS
					25	MEd
				34	PhD	
					21	PhD
Mean, Median, Degree?	and Mode for	for	22	MEd		
			28	MS		
				33	MS	
					29	MS

Mean, Median, and Mode for Age?

Mean = 213/8 = 26.6 Median = 21 21 22 25 28 29 33 34 = 26.5 Mode = 21

Mean, Median, and Mode for Degree?

Age	Degree
21	MS
25	MEd
34	PhD
21	PhD
22	MEd
28	MS
33	MS
29	MS

What about the spread of the data?

Variability

"spread"

Measure	What is It
Range	Max - Min
Standard Deviation	The typical (or standard) distance each score is from the mean

Variability

Measure	When to Use	Possible Values
Range	Ordinal, Interval, Ratio	0+
Standard Deviation	Interval, Ratio	0+

Computing Range

Two approaches:

1.Max - Min 2."[Min] to [Max]"

Computing Standard Deviation

Essentially it is the average deviation from the mean (X - M)

$$SD = \sqrt{\frac{\sum (X - M)^2}{N - 1}}$$

Other Stuff about Standard Deviation

There is a population standard deviation denoted σ but is usually unknown

Our SD is an estimate of the population standard deviation

Variability What is the range of Age?

What is the range of Grade?

Age	Grade
21	А
25	В
34	А
21	В
22	С
28	В
33	В
29	А

Variability			
What	is	the	range
of Ag	ge?		
Ran	ge = =	34 – 2 21 to	21 = 13 34
What	is	the	range
of Gr	rade	2?	
Ran	ge =	A to (C

Age	Grade
21	А
25	В
34	А
21	В
22	С
28	В
33	В
29	А

An interval that helps us understand the uncertainty in an estimate

An interval that helps us understand the uncertainty in an estimate

An interval that helps us understand the uncertainty in an estimate

95% Confidence Interval will contain the true population parameter 95% of the time

An interval that helps us understand the uncertainty in an estimate

"We are 95% confident that the true population mean is between .75 and 2.0."

An interval that helps us understand the uncertainty in an estimate

 $Interval = Estimate \pm Uncertainty$ Depends on the SD and the confidence level Bigger SD, bigger interval

An interval that helps us understand the uncertainty in an estimate

We will use this throughout the semester, not just with means but with other estimates too

Basically always have the same interpretation

Questions? Please post them to the discussion board before class starts

End of Pre-Recorded Lecture Slides

In-class discussion slides

Quick, Quiet, Qualifying Quiz

Review

- 1. The figure to the right is reliable/unreliable and valid/invalid.
- 2. When should you use the mean? What about the median?
- 3. What does the standard deviation tell us?
- 4. Can we obtain a standard deviation with nominal data?

Reading

- 5.What is the difference between a sample and a population?
- 6. What are descriptive statistics?
- 7. True or False. Inferential statistics help us use our sample to understand the population.
- 8. True or False. Independent Variables are also known as outcomes.
- 9. Hypothesis tests inform us about the _____ of our findings.

Reading

10.True or False. Hypothesis testing informs us about the population.

- 11.Is a nominal variable more qualitative or quantitative?
- 12.What information does a bar chart provide?
 What about a histogram?
 13.What is an estimate?

14.What does a confidence interval tell us?

Application

Example Using the Class Data & The Office/Parks and Rec Data Set

Visualizations and Descriptives in Jamovi