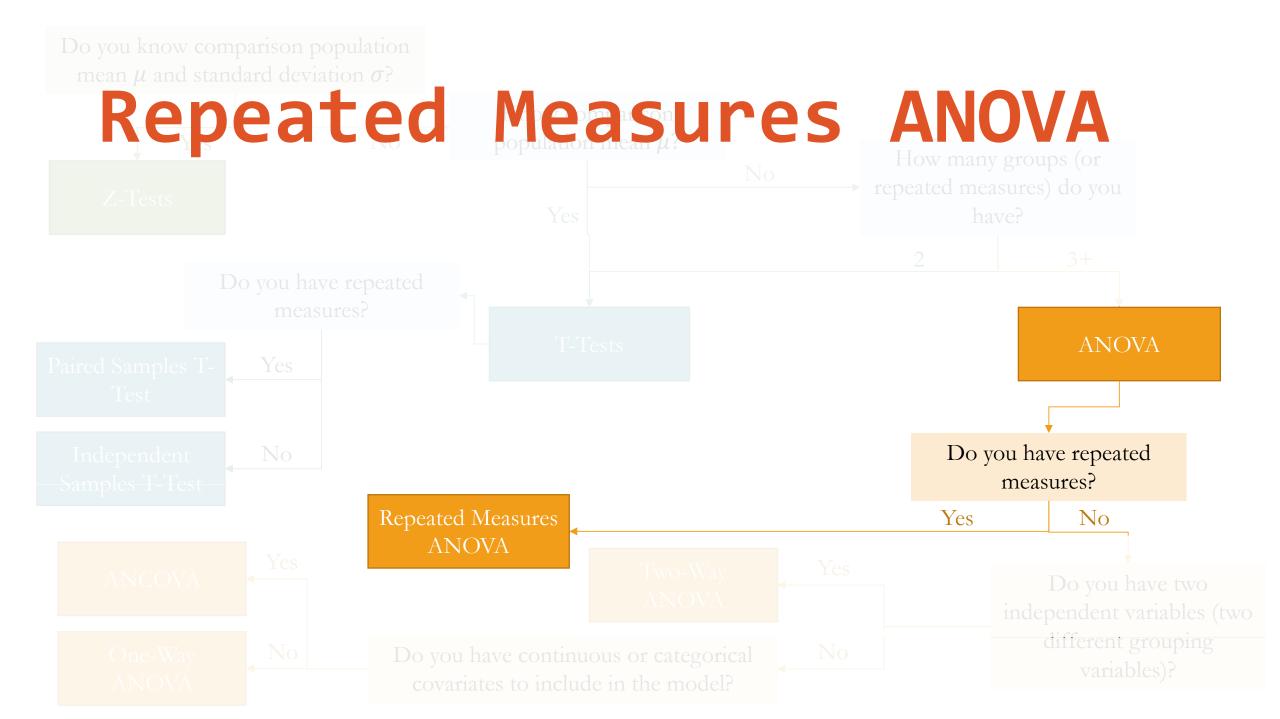
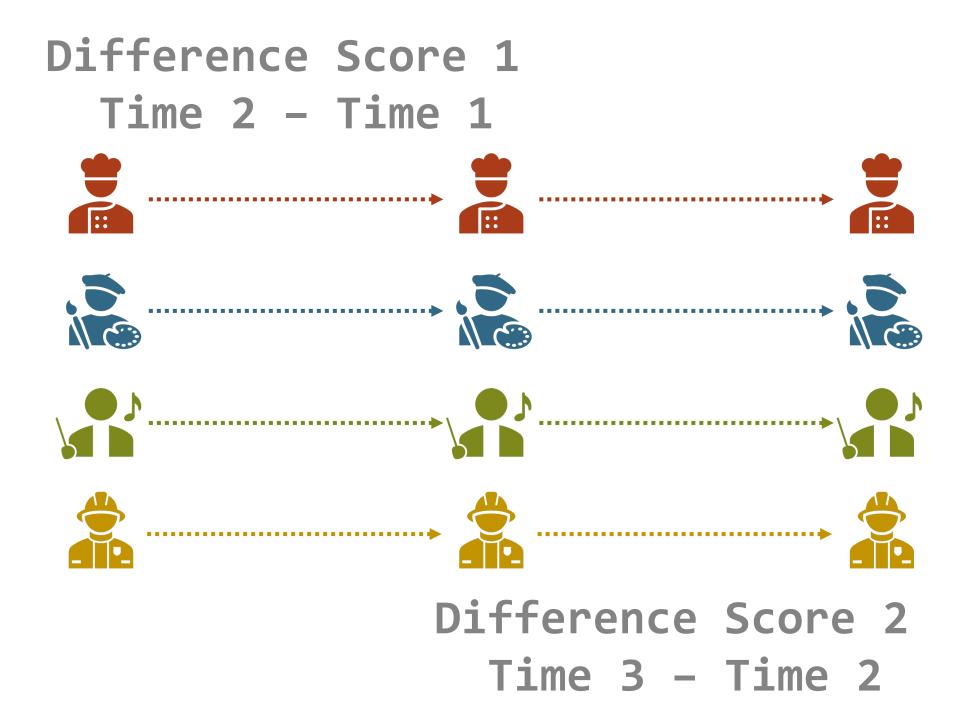

Applied Statistical Analysis EDUC 6050 Week 7


Finding clarity using data

Hypothesis Testing with ANOVA

- Repeated Measures ANOVA
- Mixed ANOVA



Time 1Time 2Time 3

Same people at each time point with same dependent variable at each time point

General Requirements

- 1. Need a DV on an interval/ratio scale measured at 2+ time points
- 2. The participants need to be present at each time point

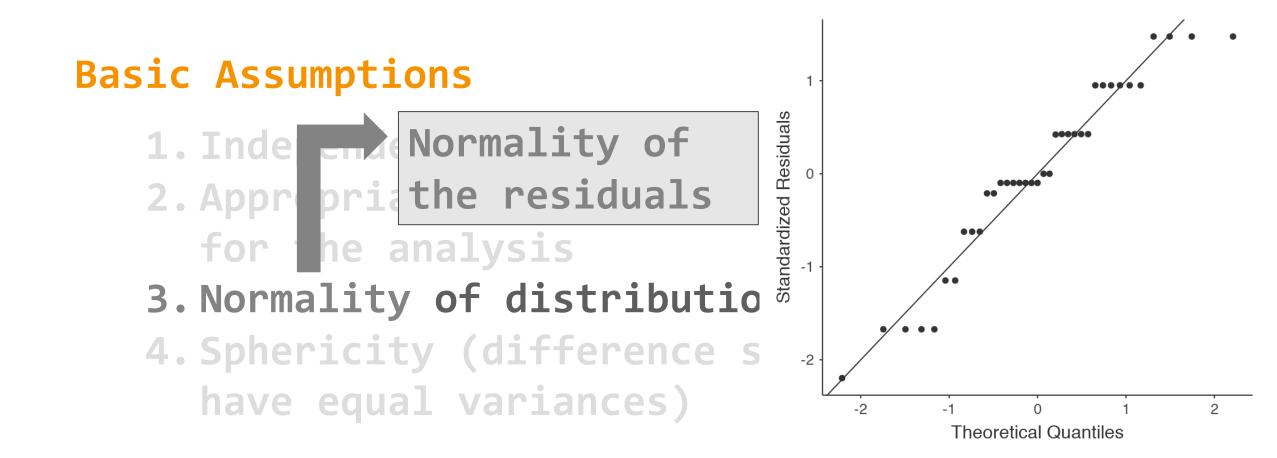
ID	Time 1	Time 2
1	8	7
2	8	8
3	9	6
4	7	6
5	7	8
6	9	5
7	5	3
8	5	3

Hypothesis Testing with RM-ANOVA

The same 6 step approach!

- 1. Examine Variables to Assess Statistical Assumptions
- 2. State the Null and Research Hypotheses (symbolically and verbally)
- 3. Define Critical Regions
- 4. Compute the Test Statistic
- 5. Compute an Effect Size and Describe it
- 6. Interpreting the results

Basic Assumptions


- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Normality of distributions
- 4. Sphericity (difference scores must have equal variances)

Basic Assumptions

Independence of data Appropria for the a 3. Normality does not affect another's) Sphericity (difference scores must have equal variances)

Basic Assumptions

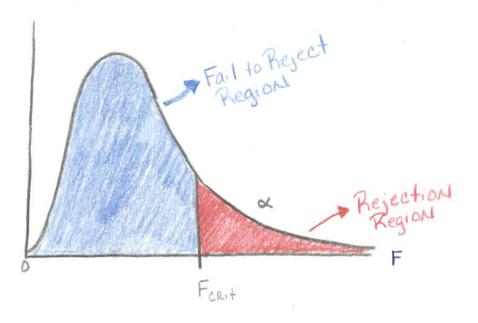
 Independence of data
 Appropriate measurement of variables for the analysis
 Normality of distributions
 Spherinit Here we need interval/ratio DV have equal variances)

Basic Assumptions

Independence of data
 Appropriate and the second secon

Examining the Basic Assumptions

- 1. Independence: random sample
- 2. Appropriate measurement: know what your variables are
- 3.Normality: Histograms, Q-Q, skew and kurtosis
- 4. Sphericity: Mauchly's test


State the Null and Research Hypotheses (symbolically and verbally)

Hypothesis Type	Symbolic	Verbal	Difference between means created by:
Research Hypothesis	At least one μ is different than the others	One of the time points' means is different than the others	True differences
Null Hypothesis	All μ 's are the same	There is no <i>real</i> difference between the time points	Random chance (sampling error)

How much evidence is enough to believe the null is not true?

Before analyzing the data, we define the critical regions (generally based on an alpha = .05)

B Define Critical Regions

We decide on an alpha level first
And compare the p-values (in Step
4) to our alpha level

 $df_{num} = k - 1$ where k is number of time points

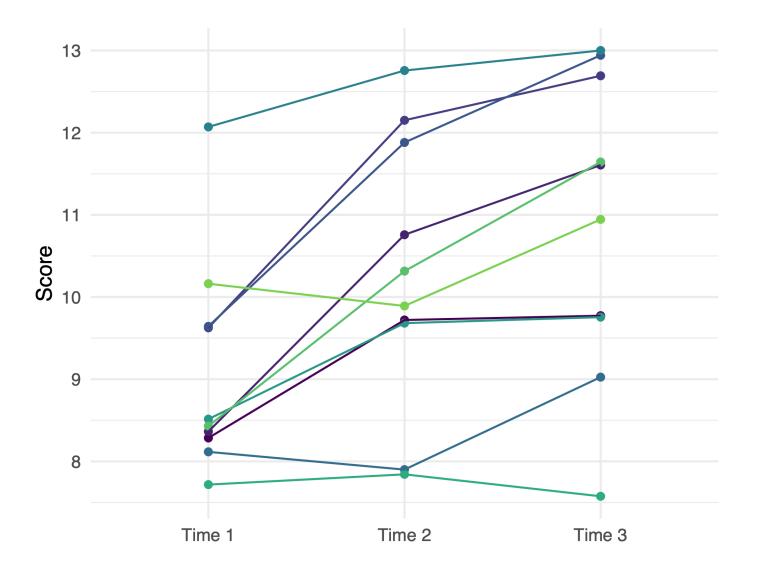
$$df_{den} = N - k$$

Repeated Measures ANOVA

	Sum of Squares	df	Mean Square	F	р	ղ² _G	η²
Productivity Residual	18.6 13.9	1 32	18.561 0.436	42.6	<.001	0.116	0.116
	3 Sums of Squares						[3]
Between Subj	ects Effects						
	Sum of Squares	df	Mean Square	F	р	ղ² _G	η²
Residual	128	32	3.99				

Note. Type 3 Sums of Squares

Repeated Measures ANOVA


Within Subjects Effects

Shows us if at least one time point is different from the others

	Sum of Squares	df	Mean Square	F	р	η^2_G	η²
Productivity	y 18.6	1	18.561	42.6	<.001	0.116	0.116
Residual	13.9	32	0.436				
Note. Type	3 Sums of Squares						
etween Sub	ojects Effects						[3
etween Sub	ojects Effects Sum of Squares	df	Mean Square	F	р	η² _G	[3 η²

Note. Type 3 Sums of Squares

F-statistic and p-value tell you if one of the times is different than the others

But it doesn't tell you which ones are different if you have 3+ time points... Post Hoc Tests

Post hoc usually refers to comparing all groups with each other (and making an adjustment for the multiple comparisons)

Contrasts usually refers to comparing some of the groups with each other (or a combination of groups with each other)

5 Compute an Effect Size and Describe it

One of the main effect sizes for ANOVA is "Eta Squared"

$$\eta^2 = \frac{SS_{Time}}{SS_{Time} + SS_{residual}}$$

η^2	Estimated Size of the Effect
Close to .01	Small
Close to .06	Moderate
Close to .14	Large

Put your results into words

Repeated Measures vs. Mixed

RM ANOVA has one time variable

Tests for any differences across the groups on one time variable

Mixed ANOVA combines One-Way **ANOVA and RM ANOVA** Tests for any differences across the times/groups (and their "Interaction" ____ combinations)

Mixed ANOVA Interaction

When the changes over time depends on another variable

Mixed ANOVA

Repeated Measures ANOVA

Within Subjects Effects

	Sum of Squares	df	Mean Square	F	р	η^2_{G}	η²
Time	6.67	1	6.667	18.34	<.001	0.048	0.045
Time * Group	2.67	1	2.667	7.34	0.011	0.020	0.018
Residual	11.27	31	0.364				
Note. Type 3	Sums of Squares						
							[2]
							[3]
Between Subje	ects Effects						[3]
	ects Effects Sum of Squares	df N	lean Square	F	р	η² _G	[3] η²
		df M		F 2.14	р 0.153		

Note. Type 3 Sums of Squares

Mixed ANOVA

Repeated Measures ANOVA

Within Subjects Effects

	Sum of Squares	ď	f Mean Squa	ire F	р	η^2_G	η²
Time	6.67		1 6.667	7 18.34	4 <.00	0.048	0.045
Time * Group	2.67		1 2.667	7.34	4 0.01	1 0.020	0.018
Residual	11.27	3	0.364	ŀ			
Between Subjec	sums of Squares ts Effects						[3]
Su	m of Squares	df	Mean Square	F	р	ղ² _G	η²
Group	8.26	1	8.26	2.14	0.153	0.059	0.056
Residual	119.56	31	3.86				

Note. Type 3 Sums of Squares

Questions? Please post them to the discussion board before class starts

End of Pre-Recorded Lecture Slides

In-class discussion

slides

Application

Example Using The Office/Parks and Rec Data Set

Hypothesis Test with RM ANOVA and Mixed ANOVA