Applied Statistical Analysis EDUC 6050 Week 10

Finding clarity using data

REGRESSION!

Comparing Means

Is one group different than the
other(s)?

- Z-tests
- T-tests
- ANOVA

We compare the means and use the variability to decide if the difference is significant

Assessing Relationships

Is there a relationship between the two variables?

- Correlation
- Regression

We look at how much the variables "move together"

Intro to Regression

Can handle many types of outcome and predictor data types Results are interpretable

Logic of Regression

We are trying to find the best fitting line

Logic of Regression

We are trying to find the best fitting line

We do this by minimizing the difference between the points and the line (called the residuals)

Logic of Regression

Two Main Types of Regression

Simple

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

Multiple

- More than one variable in the model
- When variables are standardized, gives
 "partial" correlation
- Predictors can be any combination of categorical and continuous

Two Main Types of Regression

Simple

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

Multiple

- More than one variable in the model
 - When variables are standardized, gives "partial" correlation
 - Predictors can be any combination of categorical and continuous

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

$Y = \beta_0 + \beta_1 X + \epsilon$

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

slope $Y = \beta_0 + \beta_1 X + \epsilon$ intercept

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

slope $Y = \beta_0 + \beta_1 X + \epsilon$ intercept
unexplained
stuff in Y

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

Example

We have two variables, X and Y, the predictor and outcome. We want to know if increases/decreases in X are associated (or predict) changes in Y.

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

X	Υ
3	9
2	7
4	8
4	6
5	9

Example

Regression vs. Correlation

- Very related
- In simple regression, when variables are standardized, they are the same thing
 - (just with directionality in regression)
- Jamovi provides both standardized and nonstandardized results

Quick Note: Models

- Models are just simplifications of the world that help us describe it
- "All models are wrong, but some models are useful." George E.P. Box (1979)
- A model is useful when it represents reality and is concise enough to understand and act on it

General Requirements

- 1. Two or more variables,
- 2.Outcome needs to be continuous
- 3.Others can be continuous or categorical

ID	X	Y
1	8	7
2	6	2
3	9	6
4	7	6
5	7	8
6	8	5
7	5	3
8	5	5

Hypothesis Testing with Simple Regression

The same 6 step approach!

- 1. Examine Variables to Assess Statistical Assumptions
- 2. State the Null and Research Hypotheses (symbolically and verbally)
- 3. Define Critical Regions
- 4. Compute the Test Statistic
- 5. Compute an Effect Size and Describe it
- 6. Interpreting the results

Basic Assumptions

 Independence of data
 Appropriate measurement of variables for the analysis
 Normality of distributions
 Homoscedastic

Basic Assumptions

1. Independence of data 2. Appropria Individuals are independent of for the a each other (one person's scores does not affect another's) 4. Homoscedastic

Basic Assumptions

 Independence of data
 Appropriate measurement of variables for the analysis
 Normality of distributions
 Homo and a Here we need interval/ratio outcome

Basic Assumptions

- Independer Residuals should be normally
 Appropria distributed
 - for he analysis
- 3. Normality of distributions
- 4. Homoscedastic

Basic Assumptions

Independence of data Appropriation Variance around the line should for the be roughly equal across the Be roughly equal across the whole line

4. Homoscedastic

Basic Assumptions

 Independence of data
 Appropriate measurement of variables for the analysis
 Normality of distributions
 Homoscedastic
 Linear Relationships
 No omitted variables

Basic Assumptions

1. Independence of data

Appropriate Relationships between the outcome and the continuous predictors should be linear
 Homescedastic

5.Linear Relationships
6.No omitted variables

Basic Assumptions

6.No omitted variables

Examining the Basic Assumptions

- **1. Independence:** random sample
- 2. Appropriate measurement: know what your
 variables are
- 3. Normality: Histograms, Q-Q, skew and kurtosis
- 4. Homoscedastic: Scatterplots
- 5.Linear: Scatterplots
- 6.No Omitted: check correlations, know the theory

State the Null and Research Hypotheses (symbolically and verbally)

Hypothesis Type	Symbolic	Verbal	Difference between means created by:
Research Hypothesis	$\beta \neq 0$	X predicts Y	True relationship
Null Hypothesis	$\beta = 0$	There is no <i>real</i> relationship.	Random chance (sampling error)

How much evidence is enough to believe the null is not true?

generally based on an alpha = .05

Use software's p-value to judge if it is below .05

4	Con • • • •	npu Analyses	te the	e Test Statistic	:
	Exploration T-Te	sts ANOVA	Regression Frequencies Factor		Modules
	Croup	Var1 5 4 6 3	Correlation Matrix Linear Regression Logistic Regression 2 Outcomes Binomial	Linear Regression Model Fit Measures Model R	
Click on		4 5 4	N Outcomes Multinomial		
"Linear Regre	ssion"	4	8	Model Coefficients	
		2	9	Predictor Estimate SE t p	
	10 1	3	7		
	12 2	4	7		
	13 2	3	6		
	14 2	2	5		
	15 2	1	6		
	16 2	5	4		
	17 2	6	5		
	18 2	5	7		
	19 2	3	6		
	20 2	0	8		
	21				
	23				
	24				
	25				
	26				
	27				
	28				31
	29				

Intercept = What Y is when X is zero

Slope = $\frac{\text{Covariation of X and Y}}{1 - 1}$ Variation of X

Intercept = What Y is when X is zero

Slope = $\frac{\text{Covariation of X and Y}}{\text{Variation of X}}$ The way the variables move together (just like in correlation)

Intercept = What Y is when X is zero

Slope = The change in Y for a one unit change in X, on average.

5 Compute an Effect Size and Describe it

One of the main effect sizes for regression is $R^{\rm 2}$

$R^{2} = \frac{\text{Variation in Y we can explain}}{\text{Total Variation in Y}}$

r ²	Estimated Size of the Effect		
Close to .01	Small		
Close to .09	Moderate		
Close to .25	Large		

Put your results into words

The regression analysis showed that X significantly predicts Y (b = .5, p = .02). X accounted for 32% of the variation in Y.

Example of Simple Regression

Chocolate consumption looks like it might cause car accidents. Is this accurate? What else could explain it?

What if we control for time of year?

There is no longer a relationship when we "take out" the part of the relationship that is related to time of the year

The two models

Simple Relationship

Relationship Controlling for Time of Year

Model Fit Measures

Model	R	R ²
1	0.623	0.389

Model Fit Measures

Model	R	R²
1	0.749	0.561

Model Coefficients - Car Accidents

Model Coefficients - Car Accidents

Predictor	Estimate	SE	t	р
Intercept	2.316	0.877	2.64	0.014
Chocolate Consumption	0.643	0.158	4.07	<.001

Predictor	Estimate	SE	t	р
Intercept Chocolate Consumption Time of Year	3.149 0.185 3.291	0.803 0.200 1.051	3.922 0.922 3.132	<.001 0.365 0.004

The two models

Simple Relationship

Relationship Controlling for Time of Year

Model Fit Measures

Model	R	R ²
1	0.623	0.389

Model Fit Measures

Model	R	R²
1	0.749	0.561

Model Coefficients - Car Accidents

Predictor	Estimate	SE	t	р
Intercept	2.010	0.877	2.64	0.014
Chocolate Consumption	0.643	0.158	4.07	<.001

Model Coefficients -	Car Accidents
----------------------	---------------

Predictor	Estimate	SE	t	р
Intercept	3.149	0.803	3.922	<.001
Chocolate Consumption	0.185	0.200	0.922	0.365
Time of Year	3.291	1.051	3.132	0.004

Two Main Types of Regression

Simple

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

Multiple

- More than one variable in the model
- When variables are standardized, gives "partial" correlation
- Predictors can be any combination of categorical and continuous

More than one predictor in the same model

This change the interpretation just a little:

Slope is now the change in Y for a oneunit change in X, while holding the other predictors constant.

More than one predictor in the same model

This change the interpretation just a little

Also changes what we are estimating:

More than one predictor in the same model

This change the interp little

Also changes what we are estimating:

A plane instead of a line

Girth

Provides us with a few more things to think about

- **1. Variable Selection**
- 2. Assumption Checks
- 3. Multi-collinearity
- 4. Interactions

Variable Selection When Theory Is Unclear

Several Approaches

- 1. Forward
- 2. Backward
- 3. Lasso

4. Covariates then predictor of interest

I'd recommend these two

Assumption Checks

Linearity and Homoskedasticity more difficult since it is now in 3+ dimensions

Jamovi makes these fairly straightforward

Multi-Collinearity

When two or more predictors are very related to each other or are linear combinations of each other

Check correlations Dummy codes are correct (Jamovi does this automatically)

Interactions

For the following situations, describe what approach you would take and why:

You have data on life satisfaction and age and want to the know the relationship between them. They are both continuous.

For the following situations, describe what approach you would take and why:

You have data on life satisfaction and age and want to the know the relationship between them. You believe that age causes an increase in life satisfaction. They are both continuous.

For the following situations, describe what approach you would take and why:

You have data on life satisfaction and age and believe that the relationship between them depends on a third variable – social class. Social class is categorical while the others are continuous.

For the following situations, describe what approach you would take and why:

You have multiple waves of data wherein the participants have received an intervention between times 1 and 2. There are a total of 3 time points.

For the following situations, describe what approach you would take and why:

You have a binary outcome and you think that the continuous variable "var1" predicts which category of the outcome the individual belongs to.

In-class discussion slides

Application

Example Using The Office/Parks and Rec Data Set

> Hypothesis Test with Regression