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Fit the analysis to the data, not the data to the
analysis.
- Statistical Maxim
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Motivating Example

Dr. Ramsey conducts a non-experimental study to evaluate what she refers to as
the 'strength-injury hypothesis.' It states that overall body strength in elderly
women determines the number and severity of accidents that cause bodily injury.
If the results support her hypothesis, she plans to conduct an experimental study
to assess whether weight training reduces injuries in elderly women.
Data from 100 women who range in age from 60 to 70 years old are collected. The
women initially undergo a series of measures that assess upper and lower body
strength, and these measures are summarized into an overall index of body
strength.
Over the next 5 years, the women record each time they have an accident that
results in a bodily injury and describe fully the extent of the injury. On the basis
of these data, Dr. Ramsey calculates an overall injury index for each woman.
A simple regression analysis is conducted with the overall index of body strength
as the predictor (independent) variable and the overall injury index as the
outcome (dependent) variable. 3 / 30



Correlation

Relationship between two variables
(no outcome or predictor)
Strength and direction of
relationship

Correlation vs. Regression
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Correlation

Relationship between two variables
(no outcome or predictor)
Strength and direction of
relationship

Regression

Outcome and predictor (directional)
Simple and Multiple Linear
Regression

Correlation vs. Regression

4 / 30



Y usually predicted variable
A.k.a: Dependent, criterion,
outcome, response variable
Predicting Y from X = 'Regressing
Y on X'

X usually variable used to predict Y
A.k.a: Independent, predictor,
explanatory variable

Different results when X & Y
switched

Regression analysis is procedure for
obtaining the line that best �ts data
(Assuming relationship is best
described as linear)

Regression Basics
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 = predicted (unobserved) value of Y
for a given case i

 = y-intercept:

Constant,  when X = 0, only
interpreted if X = 0 is meaningful

Alternative notation:  or 

 = slope of regression line for 1st IV

Constant, Rate of change in Y for every
1-unit change in X

Alternative notation: 

 = value of predictor for a given case i

Regression Basics
Ŷi = b0 + b1Xi

Ŷi

b0

Ŷ

a aXY

b1

bXY

Xi
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Accuracy of Prediction

Correlation  Causation

All points do not fall on regression line

Prediction works for most, but not all in sample

W/out knowledge of X, best prediction of Y is mean 

 : best measure of prediction error

With knowledge of X, best prediction of Y is from the equation 

Standard error of estimate (SEE or  ): best measure of prediction error
Estimated SD of residuals in population

≠

Ȳ

sy

Ŷ

sY ⋅X
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Standard Error of Estimate Residual or Error Variance  
or Mean Square Error

Accuracy of Prediction

 (2 df lost in estimating regression coef�cients)

Seeking smallest  as it is a measure of variation of observations around
regression line

sY ⋅X = √ = √∑(Yi − Ŷ )2

N − 2

SSresidual

df
s2
Y ⋅X = =

∑(Yi − Ŷ )2

N − 2

SSresidual

df

df = N − 2

sY ⋅X
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Error of Residuals: difference between
observed  and  --> 

Technique: Ordinary Least Squares
(OLS) regression

Goal: minimize  (  )

Line of Best Fit
The relationship (prediction) is usually not perfect so regression coef�cients (  ,  )
computed to minimize error as much as possible

b0 b1

Y Ŷ ei = Yi − Ŷ i

SSerror SSresiduals

SSresiduals = ∑
n

i=1(Yi − Ŷ i)
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Correlation = 0.764
Slope = 
Intercept = 

b1 = r = .764 = .968
sy

sx

1.66
1.31

b0 = Ȳ − b1X̄ = 14.290 − (.968 ∗ 4.093) = 10.328
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Correlation = 0.764
Slope = 
Intercept = 

b1 = r = .764 = .968
sy

sx

1.66
1.31

b0 = Ȳ − b1X̄ = 14.290 − (.968 ∗ 4.093) = 10.328

SStotal = SSexplained + SSunexplained
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Explaining Variance

Synonyms: Explained = Regression, Unexplained = Residual or Error

SStotal = SSexplained + SSunexplained
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Explaining Variance

Synonyms: Explained = Regression, Unexplained = Residual or Error

Coef�cient of Determination (  )

Computed to determine how well regression equation predicts Y from X
Range from 0 to 1
SS divided by corresponding df gives us the Mean Square (Regression or Error)
The proportion of variance in the outcome "accounted for" or "attributable to" or "predictable from" or
"explained by" the predictor

SStotal = SSexplained + SSunexplained

r2

r2 = =
Explained Variation

Total Variation

SSregression

SStotal
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Standardized Coef�cients (i.e. Beta
weights)

1 SD-unit change in X represents a  SD change in Y

Intercept = 0 and is not reported when using 

For simple regression only -->  and 

When raw scores transformed into z-scores: 

Useful for variables with abstract unit of measure

β

β

r = β r2 = β2

r = b = β
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library(tidyverse)
df %>%
  ggplot(aes(x, y)) +
    geom_point() +
    geom_smooth(se = FALSE,
                method = "lm")

Again, Always Visualize Data First
Scatterplots
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R Code: Regression

df %>%
  lm(y ~ x,
     data = .) %>%
  summary()

Call:
lm(formula = y ~ x, data = .)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.10376 -0.56125  0.05069  0.65004  2.15932 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.01762    0.09888  -0.178    0.859    
x            0.95964    0.09696   9.897   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9849 on 98 degrees of freedom
Multiple R-squared:  0.4999,    Adjusted R-squared:  0.4948 
F-statistic: 97.95 on 1 and 98 DF,  p-value: < 2.2e-16 14 / 30



R Code: Regression

df %>%
  lm(y ~ x,
     data = .) %>%
  confint()

                 2.5 %    97.5 %
(Intercept) -0.2138558 0.1786119
x            0.7672237 1.1520547
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R Code: Regression

df %>%
  lm(y ~ x,
     data = .) %>%
  coef()

(Intercept)           x 
-0.01762194  0.95963917
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R Code: Regression

coef1 <- df %>%
  lm(y ~ x,
     data = .) %>%
  coef()
confint1 <- df %>%
  lm(y ~ x,
     data = .) %>%
  confint()
cbind(coef1, confint1)

                  coef1      2.5 %    97.5 %
(Intercept) -0.01762194 -0.2138558 0.1786119
x            0.95963917  0.7672237 1.1520547

17 / 30



R Code: Predicted Values

df %>%
  lm(y ~ x,
     data = .) %>%
  predict()

          1           2           3           4           5           6 
-1.66331253 -1.58805266 -0.37685641 -0.36001934 -1.82554446  1.96902590 
          7           8           9          10          11          12 
-1.44361263 -2.20795037 -1.52382088  0.13823564  0.40028777  1.32040382 
         13          14          15          16          17          18 
 1.44610197  1.17018122 -1.18462186 -0.31876293  0.14390364 -0.85728422 
         19          20          21          22          23          24 
 0.83163117 -1.23725243 -0.44710577  0.31680345  0.02232455  0.52088462 
         25          26          27          28          29          30 
 0.58236193 -0.26353990 -0.42729936 -0.75393890  0.77690375  0.51344384 
         31          32          33          34          35          36 
-0.06357724 -0.45745486 -1.74608438 -2.49312908  0.33677392  0.78885811 
         37          38          39          40          41          42 
 0.71086918  1.21521941  0.51198239  1.54369860 -0.12583856 -0.53196921 
         43          44          45          46          47          48 
-0.47371349  0.78368856 -0.23333494  0.69249078 -0.58503655  1.15183741 
         49          50          51          52          53          54 18 / 30



Assumptions

Independence of observations
Y normally distributed

Does NOT apply to predictor variable(s) X --> Can
be categorical or continuous

Sampling distribution of the slope (  ) assumed
normally distributed
Straight line best �ts data

b1
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Assumptions
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R Code: Assumptions
df %>%
  lm(y ~ x,
     data = .) %>%
  plot(which = 2)
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R Code: Assumptions
df %>%
  lm(y ~ x,
     data = .) %>%
  resid %>%
  hist
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Let's Apply This to the Cancer Dataset
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Read in the Data
library(tidyverse)    # Loads several very helpful 'tidy' packages
library(haven)        # Read in SPSS datasets
library(furniture)    # for tableC()

cancer_raw <- haven::read_spss("cancer.sav")

And Clean It

cancer_clean <- cancer_raw %>% 
  dplyr::rename_all(tolower) %>% 
  dplyr::mutate(id = factor(id)) %>% 
  dplyr::mutate(trt = factor(trt,
                             labels = c("Placebo", 
                                        "Aloe Juice"))) %>% 
  dplyr::mutate(stage = factor(stage))
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cancer_clean %>%
  lm(totalcin ~ age,
     data = .) %>%
  summary()

Call:
lm(formula = totalcin ~ age, data = .)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0463 -0.6825 -0.4097  0.6510  5.2266 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  4.71197    1.45471   3.239  0.00362 **
age          0.03032    0.02386   1.271  0.21657   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 

Residual standard error: 1.512 on 23 degrees of freed
Multiple R-squared:  0.06559,    Adjusted R-squared:  
F-statistic: 1.614 on 1 and 23 DF,  p-value: 0.2166

R Code: Regression

25 / 30



R Code: Standardized

cancer_clean %>%
  mutate(totalcinZ = scale(totalcin),
         ageZ = scale(age)) %>%
  lm(totalcinZ ~ ageZ, 
     data = .) %>%
  summary()

Call:
lm(formula = totalcinZ ~ ageZ, data = .)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.3367 -0.4458 -0.2676  0.4253  3.4143 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.442e-16  1.975e-01   0.000    1.000
ageZ        2.561e-01  2.016e-01   1.271    0.217

Residual standard error: 0.9874 on 23 degrees of freedom
Multiple R-squared:  0.06559,    Adjusted R-squared:  0.02496 
F-statistic: 1.614 on 1 and 23 DF,  p-value: 0.2166 26 / 30



cancer_clean %>%
  cor.test(~ totalcinZ + ageZ, 
           data = .)

cancer_clean %>%
  mutate(totalcinZ = scale(totalcin),
         ageZ = scale(age)) %>%
  lm(totalcinZ ~ ageZ, 
     data = .) %>%
  summary()

R Code: Correlation vs. Standardized
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    Pearson's product-moment correlation

data:  totalcin and age
t = 1.2706, df = 23, p-value = 0.2166
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.1546769  0.5913913
sample estimates:
      cor 
0.2561066

Call:
lm(formula = totalcinZ ~ ageZ, data = .)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.3367 -0.4458 -0.2676  0.4253  3.4143 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.442e-16  1.975e-01   0.000    1.000
ageZ        2.561e-01  2.016e-01   1.271    0.217

Residual standard error: 0.9874 on 23 degrees of free
Multiple R-squared:  0.06559,    Adjusted R-squared:  
F-statistic: 1.614 on 1 and 23 DF,  p-value: 0.2166

R Code: Correlation vs. Standardized
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Questions?

29 / 30



Next Topic
Matched T-Test
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