Categorical Data Analysis

Cohen Chapters 19 & 20

For EDUC/PSY 6600

Creativity involves breaking out of established patterns in order to look at things in a different way.

Edward de Bono

Motivating examples

Dr. Fisel wishes to know whether a random sample of adolescents will prefer a new of formulation of 'JUMP' softdrink over the old formulation. The **proportion** choosing the new formulation is tested against a hypothesized value of 50%.

Dr. Sheary hypothesizes that 1/3 of women experience increased depressive symptoms following childbirth, 1/3 experience increases in elevated mood after childbirth, and 1/3 experience no change. To evaluate this hypothesis Dr. Sheary randomly samples 100 women visiting a prenatal clinic and asks them to complete the Beck Depression Inventory. She then re-administers the BDI to each mother one week following the birth of her child. Each mother is classified into one of the 3 previously mentioned categories and <u>observed</u> **proportions** are compared to the **hypothesized proportions**.

Dr. Evanson asks a random sample of individuals whether they see both a physician and a dentist regularly (at least once per year). He compares the <u>distributions of these</u> <u>binary variables</u> to determine whether there is a relationship.

Categorical Methods

- Instead of means, comparing <u>counts</u> and <u>proportions</u> within and across groups
 - E.g., *#* ill across different treatment groups
- Associations / dependencies among categorical variables
- Data are **<u>nominal</u>** or <u>**ordinal**</u>
- **Discrete** probability distribution
 - Number of finite values as opposed to <u>infinite</u>
- Each subject/event assumes 1 of 2 **mutually exclusive** values (binary or dichotomous)
 - Yes/No
 - Male/Female
 - Well/Ill

Categorical Methods

- Instead of means, comparing <u>counts</u> and <u>proportions</u> within and across groups
 - E.g., *#* ill across different treatment groups

The Binomial Distribution: EQ & coin example

$$p(X) = \frac{N!}{X!(N-X)!} P^X Q^{(N-X)}$$

- *N* = # events
- *X* = # "successes"
- *P* = *p*("success")
 - Hypothesized proportion / probability of success
- *Q* = *p*("failure")
 - Hypothesized proportion / probability of failure
- P + Q = 1
- Remember: $0! = 1; x^0 = 1$

- (Arbitrarily) assign 1 outcome as 'success' and other as 'failure'
- <u>Example</u>: Probability of correctly guessing side of coin 4 out of 5 flips?
 - 5 events, 4 successes, 1 failure
 - P = p(correct guess on each flip) = .50
 - Q = p(incorrect guess on each flip) = .50

Sampling distribution for the binomial

- Binomial probability distribution for N = 5 events, and P = .5
- Binomial Distribution Table (exact values)
- Sampling distribution as it was derived mathematically
 - We can only reject H_o with 0 or 5 out of 5 successes (1-tailed)

As N increases, binomial distribution \rightarrow normal

n	<u>x</u>	p	n	x	p	n	x	p	Table A.13"Equally Likely"Means p = 0.5
1	0	.5000		1	.0176	13	0	.0001	Probabilities of the Binomial Distribution for
	1	.5000		2	.0703		1	.0016	P = 5
2	0	.2500		3	.1641		2	.0095	
	1	.5000		4	.2461		3	.0349	
	2	.2500		5	.2461		4	.0873	Rinomial Distribution: Trials = 200 Probability of success = 0.5
3	0	.1250		6	.1641		5	.1571	Dinomial Distribution. Thats = 200, Probability of Success = 0.5
	1	.3750		7	.0703		6	.2095	• •
	2	.3750		8	.0176		7	.2095	
	3	.1250		9	.0020		8	.1571	
4	0	.0625	10	0	.0010		9	.0873	• • • • • • • • • • • • • • • • • • • •
	1	.2500		1	.0098		10	.0349	₫ • • • • • • • • • • • • • • • • • •
	2	.3750		2	.0439		11	.0095	
	3	.2500		3	.1172		12	.0016	
	4	.0625		4	.2051		13	.0001	
5	0	.0312		5	.2461	14	0	.0001	
	1	.1562		6	.2051		1	.0009	
	2	.3125		7	.1172		2	.0056	
	3	.3125		8	.0439		3	.0222	2 • • • • • • • • • • • • • • • • • • •
	4	.1562		9	.0098		4	.0611	
_	5	.0312		10	.0010		5	.1222	
~	~			-			-		

80

110

Number of Successes

120

Binomial Sign Test

- Single sample test with binary/dichotomous data
- Proportion or % of 'successes' differ from chance?
 - *H*_o: % of observations in one of two categories equals a **specified** % in population
 - H_o : Proportion of 'yes' votes = 50% in population

- Experiment: Coin flipped 10x, heads 8x
 Is coin **biased** (Heads > .50)?
- Experiment: 10 women surveyed, 8 select perfume A
 - Is one perfume preferred **<u>over another</u>**?
- For both:
 - H_o : *Proportion* (X) = .50 in population
 - H_1 : *Proportion* (X) \neq .50 in population (2-tailed)

Assumptions

- Random selection of events or participants
- Mutually exclusive categories
- Probability of each outcome is same for all trials/observations of experiment

Binomial sign test: example

- Experiment: Coin flipped 10x, heads 8x
 - Is coin **<u>biased</u>** (Heads > .50)?
 - H_o : *Proportion* (X) = .50 in population
 - H_1 : *Proportion* (X) \neq .50 in population (2-tailed)

Exact binomial test

Normal approximation to the binomial (i.e. "z-test" for a single proportion)

- What if *N* were larger, say 15?
 - Same proportions: 80% (12/15) Heads & Perfume A
 - Sum p(12, 13, 14, 15/15) = .0178 (1-tailed p-value)
- Reject H_o under both 1- and 2-tailed tests
 - 2-tailed $p = .0178 \ge 2 = .0356$

Experiment:

Senator supports bill favoring stem cell research. However, she realizes her vote could influence whether or not her constituents endorse her bid for re-election. She decides to vote for the bill only if 50% of her constituents support this type of research. In a random survey of 200 constituents, 96 are in favor of stem cell research.

Will the senator support the bill?

- Earlier: Binomial distribution \rightarrow normal distribution, as $N \rightarrow$ infinity
- Recommendation: Use *z*-test for single proportion when *N* is *large* (>25-30)
 - When *NP* and *NQ* are both > 10, close to normal
- H_o and H_1 are same as Binomial Test
- Test statistic:

$$z = \frac{X - PN}{\sqrt{NPQ}} = \frac{p_1 - P}{\sqrt{\frac{PQ}{N}}}$$

Chi-Square (χ^2) Distribution

- Family of distributions
 - As df (or k categories) \uparrow
 - Distribution becomes more normal, bell-shaped
 - Mean & variance \uparrow
 - Mean = df
 - Variance = $2^* df$
- $Z^2 = \chi^2$
 - Always positive, o to infinity
 - 1-tailed distribution
- χ^2 distribution used in many statistical tests

"GOODNESS OF FIT" Testing:

Are <u>observed</u> frequencies **similar** to frequencies <u>expected</u> by chance?

Expected frequencies

Frequencies you'd <u>expect</u> if H_o were true Usually equal across categories of variable (N / k)Can be unequal if theory dictates

Chi-Squared: GOODNESS OF FIT Tests "GoF"

<u>Hypotheses</u>

- *H*_o: Observed = Expected frequencies in population
- H_1 : Observed \neq Expected frequencies in population

<u>General form:</u>

- *O* = observed frequency
- *E* = expected frequency
- If H_o were true, numerator would be small
- Denominator standardizes difference in terms of expected frequencies

<u>Aka: Pearson or '1-way' χ² test</u>

- 1 nominal variable
- 2 or more categories

• If **nominal variable ONLY has 2 categories**, χ^2 GoF test:

- Is another large sample approximation to Binomial Sign Test
- Gives same results as *z*-test for single proportion as $z^2 = \chi^2$
- Has same H_o and H_1 as binomial or *z*-tests
- Compare obtained χ^2 statistic to critical value based on df = k 1, k = # categories

 $\chi^2 = \Sigma \frac{(O_i - E_i)^2}{E_i}$

Chi-Squared: GOODNESS OF FIT Tests "GoF"

	0	Alpha	Alph χ ² (AREA IN THE	Da		uencies in population uencies in population $\chi^2 = \sum \frac{(O_i - E_i)^2}{-}$
df	.10	.05	.025	.01	.005	F
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99 17.28 18.55 19.81 21.06	3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31 19.68 21.03 22.36 23.6	5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.54 19.02 20.48 21.92 23.34 24.74	6.63 9.21 11.35 13.28 15.09 16.81 18.48 20.09 21.67 23.21 24.72 26.22 27.69	7.88 10.60 12.84 14.86 16.75 18.55 20.28 21.96 23.59 25.19 26.75 28.30 29.82	vould be small lifference in terms of expected frequencies <u>2² test</u>
15 16	22.31 23.54	25.0 26.0				Accumptions
17	 If nomi Is an Give Has Compar 					lependent random sample itually exclusive categories <u>ed</u> frequencies: ≥ 5 per each cell

GOODNESS OF FIT Tests – EXAMPLE: K = 2

• <u>Hypotheses:</u>

- $H_0: P = 0.50$
- Observed frequencies: 96 and 104
- Expected frequencies: N / k = 200/2 = 100 df = 2 1 = 1

<u>Test Statistic:</u>

- $\chi^2 OBSERVED^{=}$
- <u>Critical Value:</u>
- $\chi^2_{CRIT}(_) =$
- <u>Conclusion:</u>

Experiment:

Senator supports bill favoring stem cell research. However, she realizes her vote could influence whether or not her constituents endorse her bid for re-election. She decides to vote for the bill only if 50% of her constituents support this type of research. In a random survey of 200 constituents, 96 are in favor of stem cell research.

Will the senator support the bill?

ALWAYS USE COUNTS!!!	1 = "success"	0 = "failure"
OBSERVED (the data)	96	
EXPECTED (based on N, P, Q)		

• Note:

GOODNESS OF FIT Tests – EXAMPLE: K = 2

<pre>data.frame(support = 96,</pre>	Ex Se res co co Sh of res	xperiment: enator supports bill favoring stem cell esearch. However, she realizes her vote ould influence whether or not her onstituents endorse her bid for re-election. ne decides to vote for the bill only if 50% ther constituents support this type of esearch. In a random survey of 200
Chi-squared test for given probabilitie	es co res	onstituents, 96 are in favor of stem cell search.
data: .		Will the senator support the bill?
X-squared = 0.32 , df = 1, p-value = 0.5716		
<pre>exp_obs <- data.frame(support = 96,</pre>	> exp 96	o_obs\$observed 104
as.table() %>%	> exp 100	o_obs\$expected 100
exp_obs\$observed	_ 100	700
exp_obs\$expected		

GOODNESS OF FIT Tests – EXAMPLE: K > 2

(any number of categories within 1 variable)

Hypotheses:

- H_0 : "equally likely" (k = 6 & N = 120)
- Expected frequencies: N / k = 120/6 = 20
- Observed frequencies: 20, 14, 18, 17, 22, 29 {Mon Sat}

• df = 6 - 1 = 5

Test Statistic:

 $\chi^2 OBSERVED^{=}$

<u>Critical Value:</u>

 $\chi^2_{CRIT}(\underline{)} =$

QUESTION: Is there a difference in *#* books checked out for different days of the week?

Conclusion:

We do NOT have evidence the # of books checked out is NOT the same EVERY day

ALWAYS USE COUNTS!!!

	Μ	т	W	Th	F	S
OBS	20	14	18	17	22	29
EXP						

GOODNESS OF FIT Tests: Confidence Intervals

- CIs for proportions
 - If k > 2, original table
 converted into table with 2
 cells
 - Proportion for category of interest vs proportion in all other categories
 - Use same formula for *z*-test for single proportion:

$$P_{obs} \pm z_{crit} \times \sqrt{\frac{P_{obs} \times Q_{obs}}{N}}$$

 Say we wanted a *CI* for proportion of books from Saturday (29/120=0.242)

GOODNESS OF FIT Tests: Effect Size

$$\chi^{2}_{Effect Size} = \frac{\chi^{2}}{N(k-1)}$$

- Ranges from 0 to 1
 - 0: Expected = Observed frequencies exactly
 - 1: Expected ≠ Observed frequencies as much as possible

GOODNESS OF FIT Tests: Post Hoc Pairwise Tests

- Like ANOVA, omnibus test, but where do differences lie?
 - 'Pinpointing the action' in contingency tables
 - Post-hoc Binomial, z-tests, or smaller 1-way χ^2 tests
 - Collapsing, ignoring levels
 - Bonferonni correction, more conservative α per comparison
 - Examining
 - Observed *vs*. expected frequencies per cell
 - Contributions to χ^2 per cell
 - Visual analysis of differences in proportions

2-way Pearson χ² Test of "Independence" or "Association"

- *Aka:* Contingency table, cross-tabulation, or *row* x *column (r x c)* analysis
 > 1 nominal <u>variable</u>
- Is distribution of 1 variable *contingent* on distribution of another?
 - Is there an association or dependence between 2 categorical variables
- Extension of χ^2 Goodness of Fit Test

• <u>Hypotheses:</u>

- H_o : Variables are independent in population
- H_1 : Variables are dependent in population
- Again, χ^2_{obt} is compared with $\chi^2_{crit} \rightarrow df = (r-1)(c-1)$

2-way Pearson χ^2 Test of "Independence" or "Association"

Same equation: Standardized squared deviations summed for all cells

$$\chi^2 = \Sigma \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Different method for computing *E*

• For each cell: Multiply corresponding row and column totals (marginals), divide by *N*

$$E_{Cell_{A}} = \frac{(a+b)(a+c)}{N}$$
$$EXP_{cell} = \frac{Total_{row} \times Total_{column}}{Total_{grand}}$$

χ² Test of "Independence" – Example

- Experiment:
- Random sample of 200 inmates are surveyed about abuse and violent criminal histories
 - Relationship between history of abuse and violent crime?
- *H*_o: <u>No association</u> between abuse history and violent criminal history in population of prison inmates
 - $O_{ij} = E_{ij}$ for all cells in population
- *H*₁: <u>Association</u> between abuse history and violent criminal history in population of prison inmates
 - $O_{ij} \neq E_{ij}$ for <u>at least one cell</u> in population

Observed frequencies

Violent Crime						
Abuse	Row Sum					
Yes	70	30	100			
No	40	60	100			
Column Sum	110	90	200			

Expected frequencies:

Test Statistic:

APA format:

χ^2 Test of "Independence" – Example

χ² Test of "Independence" – Example with Raw Data

