
Chapter 1: The Basics

Tyson S. Barrett
Summer 2017

Utah State University

1

Introduction

Objects

Data Types: Vectors

Data Types: Data Frames and Lists

Importing Data

Saving Data

Conclusions

2

Introduction

3

and
This class will use R and RStudio to show how R can make several
aspects of your research simpler, more likely to be reproducible, and

more replicable.

4

RStudio

5

Data Types, Objects and More

In this chapter we will discuss:

• data types and objects,

• importing data, and
• saving data.

These aspects of R, although maybe mundane, are important for: 1)
Data manipulation, 2) Modeling, and 3) Output.

6

Data Types, Objects and More

In this chapter we will discuss:

• data types and objects,
• importing data, and

• saving data.

These aspects of R, although maybe mundane, are important for: 1)
Data manipulation, 2) Modeling, and 3) Output.

6

Data Types, Objects and More

In this chapter we will discuss:

• data types and objects,
• importing data, and
• saving data.

These aspects of R, although maybe mundane, are important for: 1)
Data manipulation, 2) Modeling, and 3) Output.

6

Objects

7

Physical Objects

For Example:

• A table is great to eat on, write on, and somewhat good at
sitting on.

• But it is horrible at taking you from Los Angeles to Toronto.
8

Virtual Objects

Likewise, objects in R are useful for some things and not for others.
Objects are how we interact with the data, analyze it, and output it.

We will discuss the most important objects for working with data:

• Vectors

• Data Frames
• Lists

9

Virtual Objects

Likewise, objects in R are useful for some things and not for others.
Objects are how we interact with the data, analyze it, and output it.

We will discuss the most important objects for working with data:

• Vectors
• Data Frames

• Lists

9

Virtual Objects

Likewise, objects in R are useful for some things and not for others.
Objects are how we interact with the data, analyze it, and output it.

We will discuss the most important objects for working with data:

• Vectors
• Data Frames
• Lists

9

Data Types: Vectors

10

numeric

numeric is a vector with numbers.1 It can be whole numbers
(i.e. an integer) or any real number (i.e. double). Below is a
double.

x <- c(10.1, 2.1, 4.6, 2.3, 8.9)
x

[1] 10.1 2.1 4.6 2.3 8.9

Here, x, is the so-called “pointer” of this vector. So by typing the
name of the object, we can see the contents.

1the c() is a function that glues the numbers (or whatever else is in the
parenthases) together

11

character

A character vector is essentially just letters or words.

ch <- c("I think this is great.",
"I would suggest you learn R.",
"You seem quite smart.")

ch

[1] "I think this is great." "I would suggest you learn R."
[3] "You seem quite smart."

12

factor

A factor is a special vector in R for categorical variables. It is
actually stored as numbers but we can give it labels.2

race <- c(1, 3, 2, 1, 1, 2, 1, 3, 4, 2)
race <- factor(race,

labels = c("white", "black",
"hispanic", "asian"))

race

[1] white hispanic black white white black white
[8] hispanic asian black

Levels: white black hispanic asian
2Note that before we used the factor() function, the race object was just

numeric. Once we told it was a “factor” R treats it as categorical.

13

Data Types: Data Frames and Lists

14

Data Frames

The data.frame is the most important data type for most
projects.3

df <- data.frame("A" = c(1,2,1,4,3),
"B" = c(1.4,2.1,4.6,2.0,8.2),
"C" = c(0,0,1,1,1))

df

A B C
1 1 1.4 0
2 2 2.1 0
3 1 4.6 1
4 4 2.0 1
5 3 8.2 1

3We can do quite a bit with the data.frame that we called df. (Once again,
we could have called it anything, although I recommend short names.)

15

Data Frames

If “A” and “C” are factors we can tell R by:

df$A <- factor(df$A, labels = c("level1", "level2",
"level3", "level4"))

df$C <- factor(df$C, labels = c("Male", "Female"))

In the above code, the $ reaches into df to grab a variable
(i.e. column).

16

Data Frames

The following code does the exact same thing:4

df[["A"]] <- factor(df$A, labels = c("level1", "level2",
"level3", "level4"))

df[["C"]] <- factor(df$C, labels = c("Male", "Female"))

and so is the following:

df[, "A"] <- factor(df$A, labels = c("level1", "level2",
"level3", "level4"))

df[, "C"] <- factor(df$C, labels = c("Male", "Female"))

4There are actually very small differences but its really not important here.

17

Data Frames

On the previous slide:

• df[["A"]] grabs the A variable just like df$A. The last
example shows that we can grab both columns and rows.

• In df[, "C"] we have a spot just a head of the comma. It
works like this: df[rows, columns].

df[1:3, "A"]
df[1:3, 1]

• Both lines of the above code grabs rows 1 thorugh 3 and
column “A”.

18

Data Frames

On the previous slide:

• df[["A"]] grabs the A variable just like df$A. The last
example shows that we can grab both columns and rows.

• In df[, "C"] we have a spot just a head of the comma. It
works like this: df[rows, columns].

df[1:3, "A"]
df[1:3, 1]

• Both lines of the above code grabs rows 1 thorugh 3 and
column “A”.

18

Data Frames

On the previous slide:

• df[["A"]] grabs the A variable just like df$A. The last
example shows that we can grab both columns and rows.

• In df[, "C"] we have a spot just a head of the comma. It
works like this: df[rows, columns].

df[1:3, "A"]
df[1:3, 1]

• Both lines of the above code grabs rows 1 thorugh 3 and
column “A”.

18

Data Frames

Finally, we can combine the c() function to grab different rows and
columns. To grab rows 1 and 5 and columns “B” and “C” you can
do the following:

df[c(1,5), c("B", "C")]

19

Some Functions for Data Frames

Get the names of the variables:

names(df)

[1] "A" "B" "C"

Know what type of variable it is:

class(df$A)

[1] "factor"

20

Some Functions for Data Frames

Get quick summary statistics for each variable:

summary(df)

A B C
level1:2 Min. :1.40 Male :2
level2:1 1st Qu.:2.00 Female:3
level3:1 Median :2.10
level4:1 Mean :3.66

3rd Qu.:4.60
Max. :8.20

21

Some Functions for Data Frames

Get the first 10 columns of your data:

head(df, n=10)

A B C
1 level1 1.4 Male
2 level2 2.1 Male
3 level1 4.6 Female
4 level4 2.0 Female
5 level3 8.2 Female

22

data:*

Importing Data

23

Import, Don’t Input

Most of the time you’ll want to import data into R rather than
manually entering it line by line, variable by variable.

There are some built in ways to import many delimited5 data types
(e.g. comma delimited–also called a CSV, tab delimited, space
delimited). Other packages6 have been developed to help with this
as well.

5The delimiter is what separates the pieces of data.
6A package is an extension to R that gives you more functions–abilities–to work
with data. Anyone can write a package, although to get it on the Comprehensive
R Archive Network (CRAN) it needs to be vetted to a large degree. In fact, after
some practice, you could write a package to help you more easily do your work.

24

Important Note about Importing

When you import data into R, it does not do anything to the data
file (unless you ask it to). So, you can play around with it in R,
change its shape, subset it, and whatever else you’d like without
destroying or even modifying the original data.

Note that the slides that discuss saving data show you how you
can override (not recommended) or save additional data files.

25

Importing Data

The first, if it is an R data file in the form .rda or .RData simply
use:

load("file.rda")

Note that you don’t assign this to a name such as df. Instead, it
loads whatever R objects were saved to it.

26

Delimited Files

Most delimited files are saved as .csv, .txt, or .dat. As long as
you know the delimiter, this process is easy.

for csv
df <- read.table("file.csv", sep = ",", header=TRUE)
for tab delimited
df <- read.table("file.txt", sep = "\t", header=TRUE)
for space delimited
df <- read.table("file.txt", sep = " ", header=TRUE)

The argument sep tells the function what kind of delimiter the data
has and header tells R if the first row contains the variable names.
Note that at the end of the lines you see that I left a comment using #.
Anything after a # is not read by the computer; it’s just for us humans.

27

Other Data Formats

Data from other statistical software such as SAS, SPSS, or Stata
are also easy to get into R. We will use two powerful packages:

1. haven
2. foreign

To install, simply run:

install.packages("packagename")

This only needs to be run once on a computer. Then, to use it in a
single R session (i.e. from when you open R to when you close it)
run:

library(packagename)

28

Other Data Formats

Using these packages, I will show you simple ways to bring your
data in from other formats.

library(haven)
for Stata data
df <- read_dta("file.dta")
for SPSS data
df <- read_spss("file.sav")
for this type of SAS file
df <- read_sas("file.sas7bdat")

library(foreign)
for export SAS files
df <- read.xport("file.xpt")

29

Data and Questions

If you have another type of data file to import, online helps found
on sites like www.stackoverflow.com and www.r-bloggers.com often
have the solution.

30

Saving Data

31

Saving Data

Finally, there are many ways to save data. Most of the read...
functions have a corresponding write... function.

to create a CSV data file
write.table(df, file="file.csv", sep = ",")

32

Saving Data

R automatically saves missing data as NA since that is what it is in R.
But often when we write a CSV file, we might want it as blank or
some other value. If that’s the case, we can add another argument
na = " " after the sep argument.

33

Help Menu in R

If you ever have questions about the specific arguments that a
certain function has, you can simply run:

?functionname

So, if you were curious about the different arguments in
write.table simply run: ?write.table. In the pane with the
files, plots, packages, etc. a document will show up to give you
more informaton.

34

Conclusions

35

R is built for you

• R is designed to be flexible and do just about anything with
data that you’ll need to do as a researcher.

• With this chapter under your belt, you can now read basic R
code, import and save your data.

• The next chapter will introduce the “tidyverse” of methods that
can help you join, reshape, summarize, group, and much more.

36

37

	Introduction
	Objects
	Data Types: Vectors
	Data Types: Data Frames and Lists
	Importing Data
	Saving Data
	Conclusions

