— Ay - —— T —

data.table)

New Developments w
;f.i.i::':::--’._— = "‘;_l’ {* “ll’--'j =7 ' | : V) |

\

L X)
1

n S. Barrett b rfinance(2024L)

Who Am I?

* Current "maintainer" of data.table (more on this at the end!)
* PhD in Quantitative Psychology (Bachelor’s in Economics)
 data.table usersince 2016, contributor since 2019

e Author/maintainer of 6 other R packages (3 on CRAN)

* Currently managing a team of researchers at Highmark Health
(lots of big data wrangling and cleaning)

e CEO of Barrett Evaluation, LLC (big talk for | consult on projects
with big data)

rfinance(2024L)

L]
aaaaaaaaaa

“dplyr will be the death of data.table”

An attendee said to Matt Dowle (creator of data.table) at an R Finance Conference a decade ago

rfinance(2024L)

Agenda

* Why (still) use data.table?
* New developments!
* New “management”

* New features
* New ways to engage

Why data.table-

But there’s new tools, why not
use those??

Matt’s useR talk from 2014 https://youtu.be/glLrdYhizEMg?t=1m54s rfinance(2024L)

https://youtu.be/qLrdYhizEMg?t=1m54s

Query 2: "sum v1 by id1:id2": 10,000 ad hoc groups of ~100,000 rows; result 10,000 x 3

|0 00; 0.00
»% group by(idl, id2) %>% summarise(vli=sum(vl, na.rm=TRUE))
R-arrow

00 02; 0.01

§0.03; 0.03
combme(groupby(DF [:id1, :id2]), :v1l => sumeskipmissing => :v1)

§0.03; 0.03
SELECT id1, id2, sum(v1) AS v1 FROM tbl GROUP BY id1, id2

80.03; 0.03
i DF.groupby(['id1','id2'], dropna=False, observed=True).agg({'vl':'sum'}).compute()

£0.04; 0.04
SELECT id1, id2, SUM(v1) AS vl FROM x GROUP BY id1, id2

@0.05; 0.05
DF.groupby(['id1','id2']).agg(pl.sum('vl’)).collect()

B30.07; 0.08
DTL, .(vl=sum(vl, na.rm=TRUE)), by=.(id1, id2)]

BE0.11; 0.10
combme(gatherby(x [:id1, :id2], stable = false), :v1l => IMD.sum => :v1)

'MD.jl 0.11; 0.11
collap(x, vl ~ id1 + id2, sum)

collapse =m0 12: 0.07
SELECT id1, id2, sum(vl) AS vl FROM thl GROUP BY id1l, id2

spark ==20.13; 0.10
DT[:, {'vl': sum(f.vl)}, by(f.id1, f.id2)]

yydatatable E=—0.41; 0.39

dplyr DF %>% group byl(idl, id2) %>% summarise(vl=sum(vl, na.rm=TRUE))

D55 D57
DF.groupby(['id1','id2'], as_index=False, sort=False, observed=True, dropna=False).agg({'v1l':'sum'})

Pandas e ———y0.74; 0.72
Matt’s useR talk from 2014 https://youtu.be/glLrdYhizEMg?t=1m54s rfinance(2024L)

DF.jl

clickhouse

datafusion
polars

data.table

https://youtu.be/qLrdYhizEMg?t=1m54s

Query 2: "sum v1 by id1:id2": 10,000 ad hoc groups of ~100,000 rows; result 10,000 x 3

10.00; 0.00
10.02; 0.01
§0.03; 0.03

DE.i combine(groupby(DF, [:id1, :id2]), :v1l => sumeskipmissing => :v1)

1'50.03: 0.03
SELECT idl, i

§0.03; 0.03
DF.groupby(l

£0.04; 0.04

has more features than
Ly many of these

DF.groupby(][

s (it can interact with data with all of the

Em0.11; 0.

ESstex tools in R, including custom functions)

collap(x, v1

collapse =012 0.07
cpark SELECT id1, id2, sum(v1) AS v1 FROM tbl GROUP BY id1, id2 .d

Park ==u0.13:0.10
[] umi1 (f.idl, f.1d2 to

o _ DTl v] mi(f.v] by
tatable eom0.41; 0.39

DF %>% group byl(idl, id2) %>% summarise(vl=sum(vl, na.rm=TRUE))

dpl
PV N 0.55; 0.57
DF.groupby(['id1','id2'], as index=False, sort=False, observed=True, dropna=False).agg({'v1l':'sum'})

—0.74; 0.72

clickhouse
dask
datafusion
polars

data.table

pandas

rfinance(2024L)

Why data . tab-l.e ?

Concise syntax

Fast speed

Memory efficient

Careful API lifecycle management
Community

Feature rich

Matt’s useR talk from 2014 https://youtu.be/gLrdYhizEMg?t=1m54s rfinance(2024L)

https://youtu.be/qLrdYhizEMg?t=1m54s

Why data.table-
Concise syntax dt[i ? j, by]

dt[grp == “treatment”, new := mean(x), by = id]
dt[dt2, on = “id”]
dt[dt2, on = “id”, roll = TRUE] # rolling joins!

dt[, .N, by = id]

Matt’s useR talk from 2014 https://youtu.be/glLrdYhizEMg?t=1m54s rfinance(2024L)

https://youtu.be/qLrdYhizEMg?t=1m54s

Why data.table-

Careful API lifecycle management

Matt’s useR talk from 2014 https://youtu.be/glLrdYhizEMg?t=1m54s

Thoughtful and careful
so there are very few
breaking changes

Can be used in
production code safely

rfinance(2024L)

https://youtu.be/qLrdYhizEMg?t=1m54s

Why data.table-

Community More on this in a moment!

Matt’s useR talk from 2014 https://youtu.be/glLrdYhizEMg?t=1m54s rfinance(2024L)

https://youtu.be/qLrdYhizEMg?t=1m54s

Why data.table-

Power of all of R + Gforce +
Featurerich grouped optimization (more on
this later!)

Matt’s useR talk from 2014 https://youtu.be/glLrdYhizEMg?t=1m54s rfinance(2024L)

https://youtu.be/qLrdYhizEMg?t=1m54s

New Developments!

e Grant from NSF (Pl = Toby Hocking) to create new governance and
support its development (NSF POSE program, project #2303612)

* Re-invigorated development and new features
* Ways to engage in development

New Developments!

e Grant from NSF (Pl = Toby Hocking) to create new governance and
support its development (NSF POSE program, project #2303612)

https://github.com/Rdatatable/data.table/blob/master/GOVERNANCE .md

rfinance(2024L)

NA semi-democratic approach to dev

Can become any role in data.table by
submitting PR and enough votes from the
community

Can help shape the development of the
package

One aspect of the governance is the “what is
possible for development” which can be
updated

rfinance(2024L)

ew Developments!

Re-invigorated development and new features

data.table v1.15.0 (30 Jan 2024)

BREAKING CHANGE

1.

shift and nafill will now raise error input must not be matrix or array when matrix or array is provided on input, rather
than giving useless result, #5287. Thanks to @ethanbsmith for reporting.

NEW FEATURES

1.

nafill() now applies fill= to the front/back of the vector when type="locf|nocb" , #3594. Thanks to @ben519 for the feature
request. It also now returns a named object based on the input names. Note that if you are considering joining and then using
nafill(...,type='locf|nocb') afterwards, please review roll=/ rollends= which should achieve the same result in one step
more efficiently. nafill() is for when filling-while-joining (i.e. roll=/ rollends= /[nomatch=) cannot be applied.

mean(na.rm=TRUE) by group is now GForce optimized, #4849. Thanks to the h2oai/db-benchmark project for spotting this issue. The
1 billion row example in the issue shows 48s reduced to 14s. The optimization also applies to type integeré4 resulting in a difference
tothe bité4::mean.integer64 method: data.table returnsa double result whereas bité4 rounds the mean to the nearest
integer.

fwrite() now writes UTF-8 or native csv files by specifying the encoding= argument, #1770. Thanks to @shrektan for the request
and the PR.

data.table() no longer fills empty vectors with NA with warning. Instead a O-row data.table is returned, #3727. Since
data.table() is used internally by . () , this brings the following examples in line with expectations in most cases. Thanks to
@shrektan for the suggestion and PR.

e =
data.table

41 new features!

And several fixes and speed ups

rfinance(2024L)

https://github.com/Rdatatable/data.table/blob/master/NEWS.md

New Developments!

* Re-invigorated development and new features

33. DT[, let(...)] isanew alias for the functional form of :=;i.e. DT[, ':='(...)]1,#3795. Thanks to Elio Campitelli for requesting,
and Benjamin Schwendinger for the PR.

DT = data.table(A=1:2) &

DT[, let(B=3:4, C=letters[1:2])]

DT

A B C
<int> <int> <char>
1: 1 3 a
2 2 4 b

rfinance(2024L)

10. A new interface for programming on data.table has been added, closing #2655 and many other linked issues. It is built using base R's
substitute -like interface viaa new env argumentto [.data.table . For details see the new vignette programming on data.table,
and the new ?substitute2 manual page. Thanks to numerous users for filing requests, and Jan Gorecki for implementing.

DT = data.table(x = 1:5, y = 5:1) &

parameters

in_col_name = "x"

fun = "sum"

fun_argl = "na.rm"
fun_arglval = TRUE
out_col_name = "sum_x"

parameterized query
#DT[, .(out_col_name = fun(in_col_name, fun_argl=fun_arglval))]

desired query
DT[, .(sum_x = sum(x, na.rm=TRUE))]

new interface
DTL, .(out_col_name = fun(in_col_name, fun_argl=fun_arglval)),
env = list(

in_col_name = "x",
fun = "sum",
fun_argl = "na.rm",

fun_arglval = TRUE,

w out_col_name = "sum_x"
)1

rfinance(2024L)

10. A new interface for programming on data.table has been added, closing #2655 and many other linked issues. It is built using base R's
substitute -like interface viaa new env argumentto [.data.table . For details see the new vignette programming on data.table,
and the new ?substitute2 manual page. Thanks to numerous users for filing requests, and Jan Gorecki for implementing.

DT = data.table(x = 1:5, y = 5:1) i

parameters
in _col name = "x"

This is important because of non-standard evaluation

R needs to be told if this is an object or something it should look for inside of
another object

desired query
DTL, .(sum_x = sum(x, na.rm=TRUE))]

new interface
DTL, .(out_col_name = fun(in_col_name, fun_argl=fun_arglval)),
env = list(

in_col_name = "x",

fun = "sum",

fun_argl = "na.rm",
fun_arglval = TRUE,
out_col_name = "sum_x"

)]
rfinance(2024L)

New Developments!

* Re-invigorated development and new features

library(data.table)
DT = data.table(x = 1:5, y = 5:1)

> DT
custom = function(dt, var_name, mutate){ X vy thing
dt[, (var_name) := mutate] <int> <int> <int>
dt 1: 1 5 6
} 2 2 4 5
custom(DT, "thing", x+y) # ERROR 3 3 3 6
4 4 2 6
custom2 = function(dt, var_name, mutate){ 5 5 1 6

dt[, (var_name) := mutate,
env = list(mutate = substitute(mutate))]
dt
}

custom2(DT, "thing", x+y) # works!
rfinance(2024L)

New Developments!

* Re-invigorated development and new features

17. data.table printing now supports customizable methods for both columns and list column row items, part of #1523. format_col is
S3-generic for customizing how to print whole columns and by default defers to the S3 format method for the column's class if one
exists; e.g. format.sfc for geometry columns from the sf package, #2273. Similarly, format_list_item is S3-generic for
customizing how to print each row of list columns (which lack a format method at a column level) and also by default defers to the S3

format method for that item's class if one exists. Thanks to @mllg who initially filed #3338 with the seed of the idea, @franknarf1 who
earlier suggested the idea of providing custom formatters, @fparages who submitted a patch to improve the printing of timezones for
#2842, @RichardRedding for pointing out an error relating to printing wide expression columns in #3011, @JoshOBrien for improving
the output for geometry columns, and @MichaelChirico for implementing. See ?print.data.table for examples.

rfinance(2024L)

New Developments!

* Ways to engage in development

1 GitHub Issue Tracker

rfinance(2024L)

New Developments!

* Ways to engage in development

“Seal of Approval”

https://github.com/Rdatatable/data.table/issues/5723

rfinance(2024L)

New Developments!

* Ways to engage in development

3 Vote on GitHub Pull Requests

rfinance(2024L)

New Developments!

* Ways to engage in development

4 Talk, publish about it

rfinance(2024L)

Tyson S. Barrett

Thanks to Matt Dowle and Arun Srinivasan and the data.table team!

@ t.barrett88agmail.com tysonbarrett.com

g ohealthandstats github.com/tysonstanley

(i) Slides at tysonbarrett.com/teaching

rfinance(2024L)

